Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T09:08:16.757Z Has data issue: false hasContentIssue false

Evolution of Textural, Structural and Morphological Properties of Ag/TiO2 Nanocomposites Tailored by Temperature

Published online by Cambridge University Press:  31 January 2011

Marcelo Viana
Affiliation:
mamaviquimica@yahoo.com.br, UFMG, Laboratory of Nanostructured Materials, Chemistry Department, Belo Horizonte, Brazil
Nelcy Della Santina Mohallem
Affiliation:
nelcy@ufmg.br, UFMG, Laboratory of Nanostructured Materials, Chemistry Department, Belo Horizonte, Brazil
Get access

Abstract

TiO2 is a promising material for use in environmental purification due to its strong oxidizing power, photoinduced hydrophilicity, non-toxicity and long-term photostability. Nanocomposites formed by silver dispersed in titania matrix have their application quality improved since silver particles can act in the electronic structure of the titania. In this work, titanium isopropoxide and silver nitrate solution was used as starting of Ag/TiO2 nanocomposites. After irradiation and gelification at room temperature, this material was dried and calcined at various temperatures up to 1100 °C. The nanocomposites were characterized to investigate the structural evolution of the nanoparticles and the dependence of crystallite size with the calcination temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Michael, M. N. Leung, K. H. Dennis, Y. C. and Leung, K. S. Ren. Sustain. Energy Rev. 11, 401425 (2007).Google Scholar
2 Nag, M. Basak, P. and Manorama, S. V. Mat. Res. Bull. 42, 16911704 (2007).Google Scholar
3 Hsiunga, T. L. Wanga, H. P. and Ping, H. J. Phys. Chem. Sol. 69, 383385 (2008).Google Scholar
4 Sivalingam, G. and Madras, G. Appl. Catal. A 269, 8190 (2004).Google Scholar
5 Masahashi, N. Semboshi, S. Ohtsu, N. and Oku, M. Thin Solid Films 516, 74887496 (2008).Google Scholar
6 Castaneda, L. and Terrones, M. Physica B 390, 143146 (2007).Google Scholar
7 Dallacasa, V. Dallacasa, F. Physica C 468, 781784 (2008).Google Scholar
8 Magaña, S. M., Quintana, P. Aguilar, D. H. Toledo, J. A. Angeles-Chavez, C., Cortés, M. A., Léon, L., Freile-Pelegrín, Y., López, T., R. Sánchez, M. T., J. Mol. Catal. A 281, 192199 (2008).Google Scholar
9 Michael, K. S. George, R. Patrick, F. and Suresh, C. P. J. Photochem. Photobiol. A 189, 258263 (2007).Google Scholar
10 Lai, Y. Chen, Y. Zhuang, H. and Lin, C. Mater. Lett. 62, 36883690 (2008).Google Scholar
11 Kaneko, K. Moon, W. Inoke, K. Horita, Z. Ohara, S. Adschiri, T. Abed, H., and Naito, M. Mater. Sci. Eng. A 403, 3236 (2005).Google Scholar
12 Zhang, L. Xia, D. and Shen, Q. J Nanopart Res 8, 2328 (2006).Google Scholar
13 Du, J. Zhang, J. Liu, Z. Han, B. Jiang, T. and Huang, Y. Langmuir 22, 13071312 (2006).Google Scholar
14 Borras, A. Barranco, A. and Gonzalez, A. R. Langmuir 24, 80218026 (2008).Google Scholar
15 Reddy, M. P. Venugopal, A. and Subrahmanyam, M. Water Res. 41, 379386 (2007).Google Scholar
16 Perrin, F.X., Nguyen, V. and Vernet, J.L., Polymer 43, 61596167 (2002).Google Scholar
17 Kelly, K. L. and Yamashita, K. J. Phys.Chem. B 110, 77437749 (2006).Google Scholar
18 Lowell, S. and Shields, J. E. Powder Surface Area and Porosity, 3rd ed. (Champman & Hall, Australia, 1991).Google Scholar