Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-20T23:17:27.327Z Has data issue: false hasContentIssue false

Exafs Study of Co/Cu Multilayers: Mbe Versus Sputtered

Published online by Cambridge University Press:  15 February 2011

C. L. Foiles
Affiliation:
Physics Department and CFMR, Michigan State University, East Lansing, MI 48824
M. R. Franklin
Affiliation:
Physics Department and CFMR, Michigan State University, East Lansing, MI 48824
R. Loloee
Affiliation:
Physics Department and CFMR, Michigan State University, East Lansing, MI 48824
Roy Clarke
Affiliation:
Physics Department, University of Michigan, Ann Arbor, MI 48109-1120
T. I. Morrison
Affiliation:
Physics Department, Illinois Institute of Technology, Chicago, IL 60616
Get access

Abstract

EXAFS data are used to probe the local structure of Co/Cu multilayers having comparable dimensions but prepared by two different techniques, MBE and sputtering. Significant differences are found. The nearest neighbor distance in all Co layers increases about the same amount relative to the bulk value and MBE Co layers are less disordered than sputtered Co layers. Nearest neighbor distances in thinner Cu layers are less than bulk values but approach bulk value for thicker Cu layers. Nearest neighbor distances in thin MBE Cu layers are more contracted and have a more rapid thickness dependence than in sputtered Cu layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lamelas, F.J., Lee, C.H., He, Hui, Vavra, W., and Clarke, Roy, Phys. Rev. B40,5837(1989).Google Scholar
[2] Dang, K. Le, Veillet, P., He, Hui, Lamelas, F.J., Lee, C.H., and Clarke, Roy, Phys. Rev. B41,12902(1990).Google Scholar
[3] Dang, K. Le, Veillet, P., Beauvillian, P., Chappert, C., He, Hui, Lamelas, F.J., Lee, C.H. and Clarke, Roy, Phys. Rev. B43,13228(1991).Google Scholar
[4] Gronckel, H.A.M. de, Kopinga, F., Jonge, W.J.M. de, Panissod, P., Schille, J.P. and Broeder, F.J.A. den, Phys. Rev. B44,9100(1991).Google Scholar
[5] Meny, C., Panissod, P., and Loloee, R., Phys. Rev. B45,12269(1991).Google Scholar
[6] Meny, C., Panissod, P., Humbert, P., Nozieres, J.P., Speriosu, V.S., Gurney, B.A. and Zehringer, R., J. Mag. Mag. Mater. 121,406(1993).Google Scholar
[7] Panissod, P. and Meny, C., J. Mag. Mag. Mater. 126,16(1993).Google Scholar
[8] Saito, Y., Inomata, K., Goto, A. and Yasuoka, H., J. Mag. Mag. Mater. 126,466(1993).Google Scholar
[9] Suzuki, M., Taga, Y., Goto, A., and Yasuoka, H., J. Mag. Mag. Mater. 126,495(1993).Google Scholar
[10] Alphen, E.A.M. van, Velthuis, S.G.E. te, Gronckel, H.A.M. de, Kopinga, K., and Jonge, W.J.M. de, Phys. Rev. B49,17336(1994).Google Scholar
[11] Pizzini, S., Baudelet, F., Fontaine, A., Galtier, M., Renard, D., and Marliere., C. Phys. Rev. B47,8754(1993).Google Scholar
[12] Foiles, C.L., Franklin, M.R. and Loloee, R., submitted for publication (1994).Google Scholar
[13] Slaughter, J.M., Pratt, W.P.,Jr., and Schroeder, P.A., Rev. Sci. Instrum. 60,127(1989).Google Scholar
[14] Lytle, F.W., Greegor, R., Sandstrom, D., Margues, E., Wong, J., Spiro, C., Huffman, G., and Huggins, F., Nucl. Instr. Meth. A226,542(1984).Google Scholar
[15] MacXAFS version 2 supplied by Lars Furenlid, NSLS.Google Scholar