Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T09:17:19.122Z Has data issue: false hasContentIssue false

Experimental and Theoretical Study of Structure-Dielectric Property Relationships for Polysilsesquioxanes

Published online by Cambridge University Press:  10 February 2011

Sung Mog Kim
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Do Y. Yoon
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
Cattien V. Nguyen
Affiliation:
Eloret/Thermal Science Institute, 690 W. Fremont, Sunnyvale, CA 94087
Jie Han
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000
Richard L. Jaffe
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035-1000
Get access

Abstract

Structures of polysilsesquioxanes {(R- SiO1.5)n with R=H, CH3, C6H5} in spin-on thin films are investigated in relation to their dielectric properties. IR spectroscopy in combination with results from quantum chemistry calculations shows that the initial hydrido-silsesquioxane films (cured to 250 °C) exhibit more symmetric ring structures than those for methyl-silsesquioxanes. Moreover, IR spectra indicate that increasing the cure temperature above a critical value, which varies with the Si-R moiety, causes extensive three-dimensional cross-linking in silsesquioxanes via breakage of the Si-R bond and formation of networks of O-Si-O structures with a lower ring symmetry than the initial materials. Dielectric properties do not appear to vary with the structural symmetry about the O-Si-O moiety nor with the R substituents, but rather depend on the extent of three-dimensional cross-linking as seen by the loss of Si-R absorbance. Highly cross-linked silsesquioxanes show a higher dielectric value and no variation with temperature from −100 °C to 150°C range, whereas a lower value and a negative temperature dependence are seen for dielectric constants of silsesquioxane samples with little loss of Si-R absorbance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, The National Technology Roadmap for Semiconductors, 1997 Edition (Semiconductor Industry Association, San Jose, CA, 1997).Google Scholar
2. List, R. S., Singh, A., Ralston, A., and Dixit, G., MRS Bulletin 22 (10), 61 (1997).Google Scholar
3. Hacker, N. P., MRS Bulletin 22 (10), 33 (1997).Google Scholar
4. Bremmer, J. N., Liu, Y., Gruszynski, K. G., and Bell, F. C., Mat. Res. Soc. Symp. Proc. 476, 37 (1997).Google Scholar
5. Remenar, J. F., Hawker, C. J., Hedrick, J. L., Kim, S. M., Miller, R. D., Nguyen, C., Trollsis, M., and Yoon, D. Y., Mat. Res. Soc. Symp. Proc. (this volume).Google Scholar
6. Becke, A. D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
7. Devlin, F. J., Finley, J. W., Stephens, P. J., and Frisch, M. J., J. Phys. Chem. 99,16883 (1995).Google Scholar
8. Han, J.and Jaffe, R. L., J. Chem. Phys. 108, 2817 (1998).Google Scholar
9. Gaussian 94, Revision D. 1, M. Frisch, J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheeseman, J.R., Keith, T., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nanayakkara, A., Challacombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andres, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. J., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzalez, C., and Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1995.Google Scholar
10. de Man, J. M. and Sauer, J. J., J. Phys. Chem. 100, 5025 (1996).Google Scholar
11. Bärtsch, M., Bornhauser, P., Calzaferri, G., and Imhof, R., J. Phys. Chem. 98, 2817 (1994)Google Scholar