Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:12:31.493Z Has data issue: false hasContentIssue false

Experiments Probing Fundamental Mechanisms of Energetic Material Initiation and Ignition

Published online by Cambridge University Press:  16 February 2012

Christopher M. Berg
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
Kathryn E. Brown
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
Rusty W. Conner
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
Yuanxi Fu
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
Hiroki Fujiwara
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801 Current address, Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
Alexei Lagutchev
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
William L. Shaw
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
Xianxu Zheng
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
Dana D. Dlott
Affiliation:
School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Goodwin Avenue, Urbana, IL 61801
Get access

Abstract

Two fundamental processes associated with shock compression of energetic materials (EM) are initiation and ignition. Initiation occurs just behind a shock front and ignition occurs anywhere from a few nanoseconds to hundreds of nanoseconds later. Experiments are described that probe the fundamental mechanisms of these processes on relevant length and time scales: picosecond vibrational spectroscopy of nanometer thick layers of energetic materials (EM) with laser-driven shock waves, and nanosecond emission spectroscopy of micrometer thick layers of EM using laser-driven flyer plates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bulusu, S. N., Chemistry and Physics of Energetic Materials (Kluwer Academic Publishers, Dordrecht, 1990).Google Scholar
2. Dlott, D. D., in Energetic Materials: Initiation, Decomposition and Combustion, Part 2, edited by Politzer, P. and Murray, J. S. (Elsevier, New York, 2003), p. 125.Google Scholar
3. Dlott, D. D., Mat. Sci. Tech. 22, 463 (2006).Google Scholar
4. Sheffield, S. A., Bloomquist, D. D., and Tarver, C. M., J. Chem. Phys. 80, 3831 (1984).Google Scholar
5. Tarver, C. M., J. Phys. Chem. A 101, 4845 (1997).Google Scholar
6. Strachan, A., van Duin, A., Chakraborty, D., Dasgupta, S., and Goddard, W. A. III, Phys. Rev. Lett. 91, 098301 (2003).Google Scholar
7. Reed, E. J., Manaa, M. R., Fried, L. E., Glaesemann, K. R., and Joannopoulos, J. D., Nat. Phys. 4, 72 (2008).Google Scholar
8. Patterson, J. E., Lagutchev, A. S., Huang, W., and Dlott, D. D., Phys. Rev. Lett. 94, 015501 (2005).Google Scholar
9. Berg, C., Lagutchev, A., Fu, Y., and Dlott, D. D., AIP Confer. Proc. in press (2012).Google Scholar
10. Lagutchev, A., Brown, K. E., Carter, J. A., Fu, Y., Fujiwara, H., Wang, Z., and Dlott, D. D., AIP Conf. Proc. 1195, 301 (2010).Google Scholar
11. Fu, Y., Friedman, E. A., Brown, K. E., and Dlott, D. D., Chem. Phys. Lett. 501, 369 (2011).Google Scholar
12. Brown, K. E. and Dlott, D. D., J. Phys. Chem. C 113, 5751 (2009).Google Scholar
13. Nagayama, K. and Mori, Y., Journal of Applied Physics 84, 6592 (1998).Google Scholar
14. McGrane, S. D., Moore, D. S., Funk, D. J., and Rabie, R. L., Appl. Phys. Lett. 80, 3919 (2002).Google Scholar
15. Kim, H., Lagutchev, A., and Dlott, D. D., Propellants, Explosives, Pyrotechnics 31, 116 (2005).Google Scholar
16. Surber, S. E., Lozano, A., Lagutchev, A., Kim, H., and Dlott, D. D., J. Phys. Chem. C 111, 2235 (2007).Google Scholar
17. Chakraborty, D., Muller, R. P., Dasgupta, S., and Goddard, W. A. III, J. Phys. Chem. A 105, 1302 (2001).Google Scholar
18. Nomura, K. I., Kalia, R. K., Nakano, A., Vashishta, P., van Duin, A. C. T., and Goddard, W. A., Phys. Rev. Lett. 99, 148303 (2007).Google Scholar
19. Wang, Z., Carter, J. A., Lagutchev, A., Koh, Y. K., Seong, N.-H., Cahill, D. G., and Dlott, D. D., Science 317, 787 (2007).Google Scholar
20. Carter, J. A., Wang, Z., and Dlott, D. D., Acct. Chem. Res. 42, 1343 (2009).Google Scholar
21. Gu, Z., Sun, C. H., Jianheng, Z., and Ning, Z., J. Appl. Phys. 96, 344 (2004).Google Scholar
22. Swift, D. C., Niemczura, J. G., Paisley, D. L., Johnson, R. P., Luo, S.-N., and Tierney, T. E. IV, Rev. Sci. Instrum. 76, 093907 (2005).Google Scholar
23. Greenaway, M. W., Proud, W. G., Field, J. E., and Goveas, S. G., Int. J. Impact. Eng. 29, 317 (2003).Google Scholar
24. He, H., Kobayshi, T., and Sekine, T., Rev. Sci. Instrum. 72, 2032 (2001).Google Scholar
25. Weng, J., Wang, X. X., Ma, Y., Tan, H., Cai, L., Li, J., and Liu, C., Rev. Sci. Instrum. 79, 113101 (2008).Google Scholar
26. Fujiwara, H., Brown, K. E., and Dlott, D. D., Appl. Opt. 49, 3723 (2010).Google Scholar
27. Conner, R. W. and Dlott, D. D., J. Phys. Chem. (in press) (2012).Google Scholar