Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-10-01T09:55:39.119Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Cold Rolled Ni/Al MultilayerFoils

Published online by Cambridge University Press:  26 February 2011

Xiaotun Qiu
Affiliation:
xiaotun@me.lsu.edu, Louisiana State University, Mechanical Engineering, 2508 CEBA, Louisiana State University, Baton Rouge, LA, 70803, United States
Jesse Harris Graeter
Affiliation:
jgraet1@lsu.edu, Louisiana State University, Department of Mechanical Engineering, Baton Rouge, LA, 70803, United States
Laszlo Kecskes
Affiliation:
kecskes@arl.army.mil, Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, MD, 21005, United States
Jiaping Wang
Affiliation:
jiaping@me.lsu.edu, Louisiana State University, Department of Mechanical Engineering, Baton Rouge, LA, 70803, United States
Get access

Abstract

Ni/Al reactive multilayer foils were fabricated by cold rolling method andself-propagating reactions in these foils were investigated. A two-stagephase formation process was observed in the ignition experiment. The firststep is the lateral growth of Al3Ni phase from isolatednucleation sites and the following coalescence into a continuous layer; thesecond step is the growth of such Al3Ni layers in theperpendicular direction of the interface until all Al is consumed. As thereis still Ni available, Al3Ni will continuously react with Ni until no Ni isleft, and the final reaction product turns out to be ordered B2 AlNicompound. X-ray diffraction (XRD) experiments showed that the reactionproduct of the cold rolled foil was the same as the physical vapordeposition (PVD) foil. The reaction process was studied by differentialscanning calorimetry (DSC). Three peaks can be identified from the DSCcurve. Cold rolled foils were heated to different peak temperatures obtainedfrom DSC curve with the same heating rate as DSC. XRD results for such foilsshowed that the first two peaks were the exothermic formation of Al3Ni,while the last one was for the formation of AlNi. The enthalpy of thereaction for the cold rolled foil was calculated to be -57.5 KJ/mol, whichwas in good agreement with the formation enthalpy of AlNi (-59 KJ/mol). Thereaction velocities of the first formation stage were measured to be 7mm/sfor cold rolled foils, which were much smaller than the reaction velocitiesof PVD foils (which range between 1-30 m/s).

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

1. Ma, E., Thompson, C. V., Clevenger, L. A., Tu, K. N., Appl. Phys. Lett. 57, 1262 (1990).10.1063/1.103504Google Scholar
2. Reiss, M. E., Esber, C. M., Van Heerden, D., Gavens, A. J., Williams, M. E., Weihs, T. P., Mater. Sci. Eng. A261 217 (1999).Google Scholar
3. Wang, J., Besnoin, E., Duckham, A., Spey, S. J., Reiss, M. E., Knio, O. M., Weihs, T. P., J. Appl. Phys. 95, 248 (2004).Google Scholar
4. Wang, J., Besnoin, E., Knio, O. M., Weihs, T. P., J. Appl. Phys. 97, 4307 (2005).Google Scholar
5. Duckham, A., Spey, S. J., Wang, J., Reiss, M. E., Weihs, T. P., J. Appl. Phys. 96, 2336 (2004).10.1063/1.1769097Google Scholar
6. Wang, J., Besnoin, E., Duckham, A., Spey, S. J., Reiss, M., Knio, O. M., Powers, M., Whitener, M., Weihs, T. P., Appl. Phys. Lett. 83, 3987 (2003).10.1063/1.1623943Google Scholar
7. Swiston, A. J. Jr, Hufnagel, T. C., Weihs, T. P., Scripta. Mater. 48, 1575 (2003).Google Scholar
8. Battezzati, L., Pappalepore, P., Purbiano, F., Gallino, I., Acta. Mater. 47, 1901 (1999).10.1016/S1359-6454(99)00040-3Google Scholar
9. Sieber, H., Park, J. S., Weissmüller, J., Perepezko, H, Acta. Mater. 49, 1139 (2001).Google Scholar
10. Qiu, X., Graeter, J., Kecskes, L., Wang, J., to be submitted to J. Mater Res. Google Scholar
11. Ma, E., Thompson, C. V., J. Appl. Phys. 69, 2211 (1991).10.1063/1.348722Google Scholar
12. Qiu, X., Wang, J., submitted to Scripta. Mater. Google Scholar
13. Pretorius, R., Vredenberg, A. M., Saris, F. W., de Reus, R., J. Appl. Phys. 70, 3636 (1991).Google Scholar
14. Mann, A. B., Gavens, A. J., Reiss, M. E., Van Heerden, D., Bao, G., Weihs, T. P., J. Appl. Phys. 82, 1178 (1997).Google Scholar
15. Gavens, A. J., Van Heerden, D., Mann, A. B., Reiss, M. E., Weihs, T. P., J. Appl. Phys. 87, 1255 (2000).Google Scholar