Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T03:14:49.319Z Has data issue: false hasContentIssue false

Fabrication and Field Emission Properties of Carbon Nanotube Cathodes

Published online by Cambridge University Press:  10 February 2011

C. Bower
Affiliation:
University of North Carolina, Chapel Hill, NC 27599
O. Zhou
Affiliation:
University of North Carolina, Chapel Hill, NC 27599
W. Zhu
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
A. G. Ramirez
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
G. P. Kochanski
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
S. Jin
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

A variety of carbon nanotube films have been fabricated and tested as cold cathodes. A spray deposition technique was developed for processing as-grown bulk nanotubes, both single-walled and multi-walled, into films of randomly oriented nanotubes. Films of randomly oriented multi-walled nanotubes were grown using thermal chemical vapor deposition, and arrays of well-aligned multi-walled nanotubes have been fabricated using a microwave plasma enhanced chemical vapor deposition technique. The emission current-voltage (I-V) characteristics of these nanotube cathodes have been measured. Both multi-walled (random and aligned) and single-walled carbon nanotubes exhibit low turn-on fields (∼ 2 V/μm to generate 1 nA) and threshold fields (< 5 V/μm to generate 10 mA/cm2). Significantly, these cathodes were capable of operation at very large current densities (> 1A/cm2), making them candidates for application in a variety of vacuum microelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes.(New York: Academic, 1996).Google Scholar
[2] Carbon Nanotubes, edited by Ebbesen, T. W. (Cleveland, OH: CRC, 1997).Google Scholar
[3] Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett., 75, 873875, (1999).Google Scholar
[4] Bonard, J., Salvetat, J., Stockli, T., Heer, W. A. de, Forro, L., and Chatelain, A., Appl. Phys. Lett., 73, 918, (1998).Google Scholar
[5] Collins, P. G. and Zettl, A., Appl. Phys. Lett., 69, 1969, (1996).Google Scholar
[6] Heer, W. A. de, Chatelain, A., and Ugarte, D., Science, 270, 1179, (1995).Google Scholar
[7] Wang, Q. H., Corrigan, T. D., Dai, J. Y., Chang, R. P. H., and Krauss, A. R., Appl. Phys. Lett., 70, 3308, (1997).Google Scholar
[8] Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., and Smalley, R. E., Science, 273, 483, (1996).Google Scholar
[9] Bower, C., Suzuki, S., Tanigaki, K., and Zhou, O., Appl. Phys. A, 67, 4752, (1998).Google Scholar
[10] Journet, C., Maser, W., Bernier, P., Loiseau, A., Deniard, P., Lefrant, S.. Lee, R., and Fischer, J. E., Nature, 388, 756, (1997).Google Scholar
[11] Shelimov, K. B., Esenaliev, R. O., Rinzler, A. G., Huffman, C. B., and Smalley, R. E., Chem. Phys. Lett., 282, 429, (1998).Google Scholar
[12] Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., Science, 283, 512, (1999).Google Scholar
[13] Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science, 282, 1105, (1998).Google Scholar
[14] Li, J., Papadopoulos, C., Xu, J. M., and Moskovits, M., Appl. Phys. Lett., 75, 367, (1999).Google Scholar
[15] Bower, C., Zhu, W., Jin, S., and Zhou, O., manuscript submitted.Google Scholar
[16] Zhu, W., Kochanski, G. P., Jin, S., and Seibles, L., J. Vac. Sci. Technol. B, 14, 2011, (1996).Google Scholar
[17] Zhu, W., Bower, C., Zhou, O., Kochanski, G. P., and Jin, S. in Flat Panel Displays and Sensors, B. C. edited by Libsch, F. R., Friend, R., Jackson, T. and Oshima, H. (Mater. Res. Soc. Proc., San Fransico, CA, 1999).Google Scholar
[18] Brodie, I. and Spindt, C. A., “Vacuum Microelectronics,” in Advances in Electronics and Electron Physics, vol. 83, Hawkes, P. W., Ed., 1992.Google Scholar
[19] Kumar, N., Schmidt, H. K., and Xie, C., Solid State Technol., 38, 71, (1995).Google Scholar
[20] Geis, M. W., Twichell, J. C., Macaulay, J., and Okano, K., Science, 67, 1328, (1995).Google Scholar
[21] Zhu, W., Kochanski, G. P., and Jin, S., unpublished.Google Scholar
[22] Zhu, W., Kochanski, G. P., and Jin, S., Science, 282, 1471, (1998).Google Scholar