Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T12:54:03.395Z Has data issue: false hasContentIssue false

Fabrication of Ag Nanoparticles/poly(3,4-ethylenedioxythiophene) Nanocomposite Electrodes by Ink-jet Printing

Published online by Cambridge University Press:  01 February 2011

Chang Seoul
Affiliation:
cseoul@inha.ac.kr, Inha University, Department of Advenced Fiber Engineering, Division of Nanosystems Engineering, 253,Yonghyun- Dong, Nam-Gu, Inchoen, N/A, N/A, Korea, Republic of, 032-860-7497
Jin heon Kim
Affiliation:
happyhero78@hanmail.net, Inha University, Department of Advenced Fiber Engineering, Division of Nanosystems Engineering, 253,Yonghyun- Dong, Nam-Gu, Inchoen, N/A, N/A, Korea, Republic of
Tea-Heon Kim
Affiliation:
huny799@hanmail.net, Inha University, Department of Advenced Fiber Engineering, Division of Nanosystems Engineering, 253,Yonghyun- Dong, Nam-Gu, Inchoen, N/A, N/A, Korea, Republic of
Chang Seoul
Affiliation:
cseoul@inha.ac.kr, Inha University, Department of Advenced Fiber Engineering, Division of Nanosystems Engineering, 253,Yonghyun- Dong, Nam-Gu, Inchoen, N/A, N/A, Korea, Republic of
Get access

Abstract

The conductive polymer poly (3,4-Ethylenedioxythiophene) (PEDOT) is a low band-gap polymer with high charge mobility and good thermal and chemical stability. Nanosized Ag particles have found many potential applications in technical fields because of their reduced sizes, high surface-to-volume ratio, and relatively high chemical stability in air. In this report, 3,4-Ethylenedioxythiophene (EDOT) was used as the reductant for the first time in the preparation of silver nanoparticles by the reduction of AgNO3 in water. And Ag/PEDOT nanoparticles composites conducting films deposited by inkjet printing technique on plastic substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Tailiani, C., Bradley, D. D. C., Santos, D. A. Dos, Bredas, J. L., Logdlund, M., Salaneck, W. R., Nature 1999, 397, 121.Google Scholar
2. Gans, B.J. de, Schubert, U. S., Macromol. Rapid Commun. 2003, 24, 659.Google Scholar
3. Yoshioka, Yuka, Cavert, Paul D., Jabbour, Ghassan E., Macromol. Rapid Commun. 2005, 26, 238246.Google Scholar
4. Hong, C.M., Wagner, S., IEEE Electron Device Lett. 2000, 21, 384 Google Scholar
5. Curtis, C.J., Micdaner, A., Rivkin, T., Alleman, J., Schulz, D.L. and Ginley, D.S. In: Chrisey, D.B., Gamota, D.R. and Helvajian, H.(Eds.), Materials Research Society Symposium Proceedings 2000, 624, 59.Google Scholar
6. Curtis, C.J., Schulz, D.L., Micdaner, A., Alleman, J., Rivkin, T., Perkins, J.D. and Ginley, D.S. In: Hahn, H.W., Feldheim, D.L., Kubiak, C.P., Tannenbaum, R. and Siegel, R.W.(Eds.), Materials Research Society Symposium Proceedings. 2001, 676, 861.Google Scholar
7. Szezech, J.B., Megaridis, C.M., Gamota, D.R. and Zhang, J., IEEE Trans. Electron. Packag. Manuf. 2002, 25, 26.Google Scholar
8. Granstrôm, M., Berggren, M., Inganäs, O., Science, 1995, 267, 1479.Google Scholar
9. Heywang, G., Joan, F., adv. Mater. 1992, 4, 116.Google Scholar
10. Leeuw, D. M. De, Kraakman, R. A., Bongaerts, P. F. G., Mutsaers, C. M. J., Klaasen, D. B. M., Synth. Met. 1994, 66, 263.Google Scholar
11. Sakmeche, N., Aeiyach, S., Aaron, J., Jouini, M., Lacroix, J. C., Lacaze, P., langmuir. 1999, 12, 2566 Google Scholar