Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-17T23:34:45.766Z Has data issue: false hasContentIssue false

Fabrication of Conductive Polymeric Arrays using Direct Laser Interference micro/nano Patterning

Published online by Cambridge University Press:  01 February 2011

Andrés Fabian Lasagni
Affiliation:
a.lasagni@gatech.edu, Georgia Institute of Technology, Woodruff School of Mechanical Engineering, 801 Ferst Drive, Atlanta, GA 30332-0405, USA, Atlanta, GA, 30363, United States, 404 385 3407
Diego Acevedo
Affiliation:
dacevedo@exa.unrc.edu.ar, Universidad Nacional de Río Cuarto, Departamento de Química, Río Cuarto, X5804ZAB, Argentina
Cesar Barbero
Affiliation:
cbarbero@exa.unrc.edu.ar, Universidad Nacional de Río Cuarto, Departamento de Química, Río Cuarto, X5804ZAB, Argentina
Frank Muecklich
Affiliation:
muecke@matsci.uni-sb.de, Saarland University, Functional Materials, Saarbruecken, N/A, Germany
Get access

Abstract

Thin films of polyaniline (PANI) deposited onto different substrates were nano-structured using direct laser interference patterning (DLIP) at room temperature and pressure in air atmosphere. Regular line-like arrays with thicknesses up to 600 nm were fabricated by means of this technique in only one single step. The activity of the remained polyaniline was determined by monitoring its doping level using Energy Dispersive X-Ray Analysis (EDX), while its chemical structure was confirmed by Fourier Transform Infrared Spectroscopy using Attenuated Transmission Reflectance (FTIR-ATR). The structuring mechanisms of PANI supported in both polycarbonate (PC) and polyimide (PI) films were demonstrated using cross-sectional analyses performed with a dual-beam workstation (FIB/SEM Tomography). Moreover, by varying the fluence of the laser beam, it is possible to control the width of the PANI arrays, and large areas (mm2 - cm2) could be patterned. Additionally, electrical resistance measurements of the individual PANI strips demonstrated that electrical properties of unmodified regions remain unchanged.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Evans, , in Advances in Electrochemical Science and Engineering, Vol. 1, (Eds: Gerischer, H., Tobias, C.W.), VCH Verlagsgesselshaft, Weinheim, Germany, 1990, Chap. 1.Google Scholar
2. MacDiarmid, A. G., Mu, S. L., Somasiri, N. L. D., Wu, W., Mol. Cryst. Liq. Cryst.121, 187 (1985).10.1080/00268948508074859Google Scholar
3. Batich, C. D., Laitinen, H. A., Zhou, H. C., J. Electrochem. Soc. 137, 883 (1990).10.1149/1.2086572Google Scholar
4. Dong, Y. H., Mu, S. L., Electrochim. Acta. 36, 2015 (1991).Google Scholar
5. Bartlett, P. N., Whitaker, R.G., Biosensor. 3, 359 (1987).10.1016/0265-928X(87)80018-4Google Scholar
6. Barton, A. C., Collyer, S. D., Davis, F., Gornall, D. D., Law, K. A., Lawrence, E. C. D., Mills, D. W., Myler, S., Pritchard, J. A., Thompsonc, M., Higson, S. P.J., Biosensors and Bioelectronics. 20, 328 (2004).10.1016/j.bios.2004.02.002Google Scholar
7. Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M., Leeuw, D. M. de, Appl. Phys. Lett. 73, 108 (1998).10.1063/1.121783Google Scholar
8. Angelopoulos, M., Shaw, J. M., Lee, K. L., Huang, W. S., Lecorre, M.A., Tisier, M., J. Vac. Sci. Technol. B9, 3428 (1991).10.1116/1.585816Google Scholar
9. Chandross, E. A., Houlihan, F. M., Partovi, A., Quan, X. S. W., Venugopal, G., U.S. Patent 6, 45, 977 (2000).Google Scholar
10. Angelopoulos, M.. Gelorme, J. D., Liao, H. Y., Shaw, J. M., U. S. Patent, 6193909 B1 (2001).Google Scholar
11. Salavagione, H. J.; Miras, M. C.; Barbero, C.; J. Am. Chem. Soc. 125, 5290 (2003).10.1021/ja0298693Google Scholar
12. Salvagione, H. J., Miras, M.C., Barbero, C.A., Macromol. Rapid. Comm., 27, 26 (2006).10.1002/marc.200500653Google Scholar
13. Mücklich, F., Lasagni, A., Daniel, C., Intermetallics. 13, 437 (2005).10.1016/j.intermet.2004.07.005Google Scholar
14. Kelly, M., Rogg, J., Nebel, C., Stutzmann, M., Kàtai, Sz., Phys. Stat. Sol. 166, 651 (1998)10.1002/(SICI)1521-396X(199804)166:2<651::AID-PSSA651>3.0.CO;2-P3.0.CO;2-P>Google Scholar
15. Yu, F., Li, P., Shen, H., Mathur, S., Lehr, C.M., Bokowsky, U., Mücklich, F., Biomat. 26, 2307 (2005).10.1016/j.biomaterials.2004.07.021Google Scholar
16. Acevedo, D. F., Miras, M. C., Barbero, C. A. in Combinatorial Synthesis and Screening of Photochromic Dyes and Modified Conducting Polymers. (Eds. Potyrailo, R.v A Maier, W. F.), CRC Press, New York, USA, Chap. 13 (2006).Google Scholar
17. Bäuerle, D. in Laser processing and chemistry, 2nd edition, Springer Verlag, Berlin (1996).10.1007/978-3-662-03253-4Google Scholar
18. Acevedo, D., Lasagni, A., Barbero, C., Mücklich, F., Adv. Mater. 19, 1272 (2007).10.1002/adma.200601693Google Scholar
19. Acevedo, D. F., Miras, M. C., Barbero, C.A., J. Comb.Chem. 7, 513 (2005).10.1021/cc049810nGoogle Scholar