Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T10:30:54.167Z Has data issue: false hasContentIssue false

Fabrication of Micro- and Nanostructures with Monodispersed Colloidal Spheres as the Active Components

Published online by Cambridge University Press:  17 March 2011

Byron Gates
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700
Brian Mayers
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700
Zhi-Yuan Li
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700
Younan Xia
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700, xia@chem.washington.edu
Get access

Abstract

Monodispersed colloidal spheres with dimensions in the range of 100 nm to 10 μm can be used as building blocks to fabricate highly ordered 3D micro- and nanostructures. For example, they can be self-assembled into closely packed lattices, which can be subsequently used as templates to generate 3D porous structures. Here we present the recent progress in our group regarding this approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, (a) a recent review: Xia, Y., Gates, B., Yin, Y., and Lu, Y., Adv. Mater. 12, 693, (2000). (b) O. D. Velev, A. M. Lenhoff, and E. W. Kaler, Science 287, 2240, (2000). (c) H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya, J. Requena, A. Mifsud, and V. Fornes, Adv. Mater. 10, 480, (1998). (d) W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk, and G. H. Wegdam, Phys. Rev. B 53, 16231, (1996). (e) J. H. Holtz, and S. A. Asher, Nature 389, 829, (1997); (f) I. I. Tarhan, and G. H. Watson, Phys. Rev. Lett. 76, 315, (1996).Google Scholar
2. See, for example, (a) Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J. P., Ozin, G. A., Toader, O., and Driel, H. M. van, Nature 405, 437, (2000). (b) O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Nature 389, 447, (1997). (c) Yu. A. Vlasov, N. Yao, and D. J. Norris, Adv. Mater. 11, 165, (1999). (d) J. E. G. J. Wijnhiven, and W. L. Vos, Science 281, 802, (1998). (e) B. T. Holland, C. F. Blanford, and A. Stein, Science 281, 538, (1998). (f) P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, and G. D. Stucky, Science 282, 2244, (1998). (g) A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Danta, J. Marti, and V. G. Ralchenko, Science 282, 897, (1998). (h) G. Subramanian, V. N. Manoharan, J. D. Thorne, and D. J. Pine, Adv. Mater. 11, 1261, (1999). (i) B. Gates, Y. Yin, and Y. Xia, Chem. Mater. 11, 2827, (1999). (j) G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, Appl. Phys. Lett. 74, 3933, (1999). (k) O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler, Nature 401, 548, (1999). (l) P. Jiang, J. Cizeron, J. F. Bertone, and V. L. Colvin, J. Am. Chem. Soc. 121, 7957, (1999).Google Scholar
3. (a) Joannopoulos, J. D., Villeneuve, P. R., and Fan, S., Nature 386, 143, (1997).Google Scholar
4. See, for example, (a) Noda, S., Yamamoto, N., and Sasaki, A., Jpn. J. Appl. Phys. 35, L909, (1996). (b) S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251, (1998). (c) M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Tuberfield, Nature 404, 53, (2000). (d) S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan Science 289, 604, (2000).Google Scholar
5. See, for example, (a) special issue in IEEE J. Lightwave Technology 17, 1931, (1999). (b) J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light, (Princeton, 1995), pp.78-93.Google Scholar
6. (a) Park, S. H., Qin, D., and Xia, Y., Adv. Mater. 10, 1028, (1998). (b) S. H. Park, and Y. Xia, Langmuir 15, 266, (1999). (c) B. Gates, D. Qin, and Y. Xia, Adv. Mater. 11, 466, (1999). (d) B. Gates, S. H. Park, and Y. Xia, Adv. Mater. 12, 653, (2000). (e) B. Gates, and Y. Xia, Adv. Mater. 12, 1329, (2000).Google Scholar
7. (a) Li, Z.-Y., Wang, J., and Gu, B.-Y., Phys. Rev. B 58, 3721, (1998). (b) K. Busch, and S. John, Phys. Rev. E 58, 3896, (1998). (c) M. Doosje, B. J. Hoenders, and J. Knoester, J. Opt. Soc. Am. B 17, 600, (2000).Google Scholar