Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T11:39:04.029Z Has data issue: false hasContentIssue false

Fabrication of Self-Assembling AlGaN Quantum Dot on AlGaN Surfaces Using Anti-Surfactant

Published online by Cambridge University Press:  15 February 2011

H. Hirayama
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan, hirayama@postman.riken.go.jp
Y Aoyagi
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan, hirayama@postman.riken.go.jp
S. Tanaka
Affiliation:
Hokkaido University, Kita-ku, Sapporo 060, Japan
Get access

Abstract

We report on the first artificial fabrication of self-assembling AlGaN quantum dots (QDs) on AIGaN surfaces using metal organic chemical vapor deposition (MOCVD). The AlGaN QDs are fabricated using a growth mode change from 2-dimensional step-flow growth to 3-dimensional island formation by modifying the AlGaN surface energy with Si anti-surfactant. The average lateral size and the thickness of fabricated AlGaN QDs, as determined by AFM, are approximately 20 nm and 6nm, respectively. The dot density was found to be controlled from 5×1010cm-2 down to 2×109 cm-2 by increasing the dose of Si anti-surfactant. We obtained the photoluminescence (PL) from AlGaN QDs embedded with Al0.38Ga0.62N capping layers. The Al incorporation in AlGaN QDs was controllable within the range of 1-5 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys., 36, L1059 (1997).Google Scholar
2. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett., 64, 1687 (1994).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett., 69, 3034 (1996).Google Scholar
4. Suzuki, M., and Uenoyama, T., Jpn. J. Appl. Phys., 35, 1420 (1996).Google Scholar
5. Sugawara, M., and Mukai, K., Ouyoubuturi 65, 6, 614 (1996).Google Scholar
6. Narukawa, Y. et al, Appl. Phys. Lett., 70, 891 (1997).Google Scholar
7. Tanaka, S., Iwai, S., and Aoyagi, Y., Appl. Phys. Lett., 69, 4096 (1996).Google Scholar
8. Hirayama, H. Tanaka, S., Ramvall, P. and Aoyagi, Y., Appl. Phys. Lett., 72, 1736 (1998).Google Scholar
9. Tanaka, S., Hirayama, H., and Aoyagi, Y., Appl. Phys. Lett., 71, 1299 (1997).Google Scholar
10. Tanaka, S. and Aoyagi, Y., International Symposium on Formation, Physics and Device Application of Quantum Dots Structures, 126 (1998)Google Scholar