Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T14:45:56.857Z Has data issue: false hasContentIssue false

Fabrication of SnO2 Nano Patterns Using Surface Relief Grating

Published online by Cambridge University Press:  01 February 2011

Fadong Yan
Affiliation:
bestfafa@gmail.com, University of Massachusetts Lowell, Center for Advanced Materials, One University Ave., Lowell, MA, 01854, United States
Lian Li
Affiliation:
Lian_li@uml.edu, University of Massachusetts Lowell, Center for Advanced Materials, Lowell, MA, 01854, United States
Pilho Huh
Affiliation:
pilho_huh@student.uml.edu, University of Massachusetts Lowell, Center for Advanced Materials, Lowell, MA, 01854, United States
Yanping Wang
Affiliation:
yanpingwang2002@hotmail.com, University of Massachusetts Lowell, Center for Advanced Materials, Lowell, MA, 01854, United States
Lynne A Samuelson
Affiliation:
Lynne.Samuelson@us.army.mil, U. S. Army Natick Soldier Development and Engineering Center, Natick, MA, 01760, United States
Jayant Kumar
Affiliation:
jayant_kumar@uml.edu, University of Massachusetts Lowell, Center for Advanced Materials, Lowell, MA, 01854, United States
Get access

Abstract

Nano- and micro-structured SnO2 has been widely utilized as gas sensors. These SnO2 based gas sensors are often made by chemical etching, vapor deposition or lithography. Here we report a facile and vacuum-free technique to fabricate large area one-dimensional periodic SnO2 nano arrays using surface relief grating created on azobenzene functionalized polymer thin films as template. Atomic force microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy characterizations confirmed the successful fabrication of SnO2 nano arrays. The fabricated SnO2 structure exhibited the same periodicity as the template with a width of a few hundred nanometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maffes, T., Owen, G., Penny, M., Starke, T., Clark, S., Ferkel, H., Wilks, S., Surf. Sci. 520, 29 2002).Google Scholar
2. Gudiksen, M., Lauhon, L. Wang, J. Smith, D., Lieber, C., Nature 415, 617 (2002).Google Scholar
3. Li, Y., Qian, F., Xiang, J., Lieber, C., Materials Today 9, 18 (2006).Google Scholar
4. Liu, C., Zu, X., Zhou, W., J. Phys.: Condens. Matter 18, 6001 (2006).Google Scholar
5. Bosea, A. Chandra, Kalpanab, D., Thangaduraia, P., Ramasamy, S., J Power Sourc 107, 138 (2002).Google Scholar
6. Commi, E., Faglia, G., Sberveglieri, G., Pan, Z., and Wang, Z., Appl. Phys. Lett. 81, 1869 (2002).Google Scholar
7. Broers, A., Molzen, W., Cuomo, J., Wittles, N., Appl. Phys. Lett. 29, 596 (1976).Google Scholar
8. Xia, Y., Whitesides, G.M., Annu. Rev. Mater. Sci 28, 153 (1998).Google Scholar
9. Molares, M., Buschmann, V., Dobrev, D., Neumann, R., Scholz, R., Schuchert, I., Vetter, J., Adv. Mater. 13, 62 (2001).Google Scholar
10. Kim, D., Tripathy, S., Li, L., Kumar, J., Appl. Phys. Lett. 66, 1166 (1995).Google Scholar
11. Koboshi, T., Naka, H., US. Patent 4873352 (1989).Google Scholar