Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-18T06:49:59.825Z Has data issue: false hasContentIssue false

Facet Formation of Lineshaped Silicon Mesas Grown with Micro Shadow Masks

Published online by Cambridge University Press:  15 February 2011

H. Gossner
Affiliation:
Institute of Physics, Faculty of Electric Engineering, Universität der Bundeswehr München, D-85577 Neubiberg, FRG
G. Fehlauer
Affiliation:
Institute of Physics, Faculty of Electric Engineering, Universität der Bundeswehr München, D-85577 Neubiberg, FRG
W. Kiunke
Affiliation:
Institute of Physics, Faculty of Electric Engineering, Universität der Bundeswehr München, D-85577 Neubiberg, FRG
I. Eisele
Affiliation:
Institute of Physics, Faculty of Electric Engineering, Universität der Bundeswehr München, D-85577 Neubiberg, FRG
M. Stolz
Affiliation:
Siemens AG, Research Laboratories, Otto-Hahn-Ring 6, D-81739 München, FRG
M. Hintermaier
Affiliation:
Siemens AG, Research Laboratories, Otto-Hahn-Ring 6, D-81739 München, FRG
E. Knapek
Affiliation:
Siemens AG, Research Laboratories, Otto-Hahn-Ring 6, D-81739 München, FRG
Get access

Abstract

As reported previously, perfect facets can be achieved at the side walls of submicron silicon mesa structures grown by molecular beam epitaxy (MBE) with micro shadow masks [1]. An essentially self organizing, three-dimensional growth was observed. In this paper we present the results of the epitaxial growth on (001) substrates using long (≥ 1μm), lineshaped mask apertures, which put constraints on the formation of facets. At a growth temperature of 500°C {111} facet formation is observed for lineshaped mesas oriented along the <110> direction of the substrate. Side walls with a length of I μm are perfectly plane, while mesas with a length of 10 μm and more show rough sidewalls. This is explained by a limited silicon adatom diffusion on the facet. For higher flux rates the facet formation is suppressed. This can be understood in terms of a reduced adatom diffusion.

A crossover from {111} to {113} facet formation is observed at growth temperatures above 500°C. A model for the temperature dependent formation of {111} and {113} facets is given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gossner, H., Baumgaertner, H., Hammerl, E., Wittmann, F., Eisele, I., Heinzel, T., Lorenz, H., Jpn.J.Appl.Phys. 33,447 (1994).Google Scholar
2. Nötzel, R. and Ploog, K.H., Adv.Mater. 5, 22 (1993).Google Scholar
3. Eberl, K., Grambow, P., Lehmann, A., Kurtenbach, A., Klitzing, K.v., Heitmann, D., Dilger, M., Hohenstein, M., Appl.Phys.Lett. 63, 1059 (1993).Google Scholar
4. Rajkumar, K.C., Kaviani, K., Chen, P., Madhukar, A., Rammohan, K., Rich, D.H., J.Cryst.Growth 127, 863 (1993).Google Scholar
5. Krishnamurthy, M., Wassermeier, M., Williams, D.R.M., Petroff, P.M., Appl.Phys.Lett. 62, 1922 (1993).Google Scholar
6. Galeuchet, Y.D. and Roentgen, P., J.Cryst.Growth 107, 147 (1991).Google Scholar
7. Hirayama, H., Hiroi, M., Ide, T., PRB 48, 17331 (1993).Google Scholar
8. Ohtsuka, M. and Suzuki, A., J.Appl.Phys. 73, 7358 (1993).Google Scholar
9. Hammerl, E. and Eisele, I., Appl.Phys.Lett. 62, 2221 (1993).Google Scholar
10. Eaglesham, D.J., White, A.E., Feldman, L.C., Moriya, N., Jacobson, D.C., PRL 70, 1643 (1993).Google Scholar
11. Mo, Y.-W., Swartzentruber, B.S., Kariotis, R., Webb, M.B., Lagally, M.G., PRL 63 (1989).Google Scholar
12. Chadi, D.J., PRL 59, 1691 (1987).Google Scholar