Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T21:32:46.627Z Has data issue: false hasContentIssue false

Ferroelectric Properties and Crystal Structure of YBa2Cu3O7/BaxSr(1−x)TiO3 Heterostructures

Published online by Cambridge University Press:  10 February 2011

CH. Schwan
Affiliation:
Johannes Gutenberg-Universität, Institut für Physik, Mainz, Germany
F. Martin
Affiliation:
Johannes Gutenberg-Universität, Institut für Physik, Mainz, Germany
G. Jakob
Affiliation:
Johannes Gutenberg-Universität, Institut für Physik, Mainz, Germany
J. C. Martinez
Affiliation:
Johannes Gutenberg-Universität, Institut für Physik, Mainz, Germany
H. Adrian
Affiliation:
Johannes Gutenberg-Universität, Institut für Physik, Mainz, Germany
Get access

Abstract

Epitaxial YBa2Cu3O7/Ba0.5Sr0.5TiO3 (YBCO/BST) and YBCO/BaTiO3 (BTO) heterostructures were prepared by dc and rf sputtering on SrTiO3 and MgO substrates. The YBCO/BTO bilayers exhibit an inductive superconducting transition temperature of 85 K and the ferroelectric phase transition of BST shows a Curie-Weiss temperature of 310 K. Microstructure was investigated by x-ray-diffraction and atomic force microscopy. In this work we also studied the insulator's conductivity and the contribution of domain walls to permittivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lin, H., Wu, N.J., Xie, K., Li, X.Y., and Ignatiev, A., Appl. Phys. Lett. 65, 953 (1994).Google Scholar
2. Dormans, G.J.M. and Larsen, P.K., Appl. Phys. Lett. 65, 3326 (1994).Google Scholar
3. Abe, K. and Komatsu, S., J. Appl. Phys. 77, 6461 (1995).Google Scholar
4. Yoon, S., Lee, J., and Safari, A., J. Appl. Phys. 76, 2999 (1994).Google Scholar
5. Sato, K., Takahashi, M., Matsunami, N., and Takai, Y., Supercond. Sci. Technol. 9, A156, (1996).Google Scholar
6. Lin, W.J., Tseng, T.Y., Lu, H.B., Tu, S.L., Yang, S.J., and Lin, I.N., J. Appl. Phys. 77, 6466 (1995).Google Scholar
7. Zhang, J., Chen, Z., Cui, D., Lu, H., Zhou, Y., Li, L., Yang, G., Jiang, N., and Hao, J., Appl. Phys. Lett. 66, 2069 (1995).Google Scholar
8. Gill, D.M., Block, B.A., Conrad, C.W., Wessels, B.W., and Ho, S.T., Appl. Phys. Lett. 69, 2968 (1996).Google Scholar
9. Dietz, G.W., Schumacher, M., Waser, R., Streiffer, S.K., Basceri, C., and Kingon, A.I., J. Appl. Phys. 82, 2359 (1997).Google Scholar
10. Wang, Y. and Tseng, T., J. Appl. Phys. 81, 6762 (1997).Google Scholar
11. Boikov, Y.A., Ivanov, Z.G., Kiselev, A.N., Olsson, E., and Claeson, T., J. Appl. Phys. 78, 4591 (1995).Google Scholar
12. Basceri, C., Streiffer, S.K., Kingon, A.I., and Waser, R., J. Appl. Phys. 82, 2497 (1997).Google Scholar
13. Hilton, A. D. and Ricketts, B.W., J. Phys. D: Appl. Phys. 29, 1321 (1996).Google Scholar
14. Schwan, C., Schattke, A., Eckert, S., Adrian, H., Schiener, B., and Loidl, A., J. de Phys. IV C3, 321 (1996).Google Scholar
15. AI-Shareef, H.N., Tuttle, B.A., Warren, W.L., Dimos, D., Raymond, M.V., and Rodriguez, M.A., Appl. Phys. Lett. 68, 272 (1996).Google Scholar
16. Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).Google Scholar
17. Taylor, D.V. and Damjanovic, D., J. Appl. Phys. 82, 1973 (1997).Google Scholar