Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-08T06:37:12.346Z Has data issue: false hasContentIssue false

Finite Element Analysis in Orthopaedics

Published online by Cambridge University Press:  26 February 2011

James B. Koeneman*
Affiliation:
Harrington Arthritis Research Center, 1800 East Van Buren, Phoenix, AZ 85006
Get access

Abstract

Predicting the stress state in bones is important to the understanding of bone remodeling and the long-term reliability of total joint implants. Beam theory, 2-D and 3-D finite element analysis have been used to calculate stress distributions. These finite element analyses of bone structures are progressing from crude models for which the clinical relevance has been questioned to an important tool which is necessary to understand stress related bone changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meyer, H., “Die Architectur der Spongiosa,” Archiv. f. Anat. Phys. U. Wissensoh. Medizin, 1867, p. 615.Google Scholar
2. Wolff, J., “Ueber die innere Architekturer der Knochen und ihre Bedeutung fuer die Frage Knochenwachstum,” Vir chows Arch. Path. Anat. Physiol., 50,.p. 389, (1870).CrossRefGoogle Scholar
3. Koch, J.C., “The Laws of Bone Architecture,” Am. J. Anal., 21, pp. 177289, (1917).Google Scholar
4. Huiskes, R., “Some Fundamental Aspects of Human Joint Replacement,8 Acta Orthopaedica Scandinavia, Supl. 185, 1979.Google Scholar
5. Huiskes, R., Chao, E.Y.S., “A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade,” J. Biomechanics, Vol. 16(6), pp. 385409, (1983).Google Scholar
6. Simon, B.R. (Ed), “Proceedings of International Conference on Finite Elements in Biomechanics,” Feb. 1980.Google Scholar
7. Vallispar, S., Svensson, N.L., Wood, R.D., “Three Dimensional Stress Analysis of the Human Femur, Comput. Biol. Med., 1, pp. 253264, (1977).Google Scholar
8. Rohlmann, A., Kolbel, R., Bergmann, G., “Practical Value of the Finite Element Method for the Stress Calculation at the Implant-bone Surface,” Biomech. VI B, Int. Series on Biomechanics, Asmussen, E., Jorgensen, K. (Eds.), University Park Press, Baltimore (1978).Google Scholar
9. Tarr, R.R., Lewis, J.L., Jayeox, P., Sarmiento, A., Schmidt, J., Lotta, L.L., “Effect of Materials, Stem Contact on Stress Distribution in Geometry, and Collar-Calcar Contact on Stress Distribution in the Proximal Femur,” 25th ORS (1979)Google Scholar
10. Forte, N.R., “Structural Analysis Consideration in the Design of the Total Hip Prosthesis,” 21st ORS (1975).Google Scholar
11. Bartel, D.L., Desormeaux, S.G., “Femoral Stem Performance,” Proceedings, Sympo Retrieval and Analysis of Orthopaedic Implants, Weinstein, A. et.al. (Eds.), NBS Special Pub. #472 (1976).Google Scholar
12. Gola, M.M., Gugliotta, A.A., “Analytical Estimate of Stresses in Bone and Prosthesis Stems,” J. Strain Anal., 14(1), p. 29, (1979).Google Scholar
13. Andracchi, T.P., Galante, J.O., Belytscko, T.B., Hampton, S., “A Stress Analysis of the Femoral Stem in Total Hip Prostheses,” J. Bone Joint Surg., 58–A(5), p. 618, (1975).Google Scholar
14. Kwak, B.M., et.al., “An Investigation of the Effect of Cement Thickness on an Implant by Finite Element Analysis,” Int. Orthop. (SICOT) 2, pp. 315319, (1979).Google Scholar
15. Cook, S.D., Klawitter, J.J., Weinstein, A.M., “The Influence of Design Parameters on Calcar Stresses Following Femoral Head Arthroplasty,” J. Biomedical Materials Research, 14, pp. 133144, (1980).Google Scholar
16. McNeice, G.M., Ayres, R.K., Raso, V.J., “The Total Hip – Finite Element and Clinical Studies,” Proceedings, ASCE Engineering Mechanics Specialty Conference, U of Waterloo, (1976).Google Scholar
17. Hampton, S.J., Andracchi, J.P., Galante, J.O., Belytschko, T.B., “Analytical Approach to the Study of Stresses in the Femoral Stem of Total Hip Prostheses,” Paper 32–1, 29th ACENB (1976).Google Scholar
18. Svensson, N.L., Vallispar, S., Wood, R.D., “Stress Analysis of Human Femur with Implanted Charnley Prosthesis,” J. Biomechanics, 10, pp. 581–588.CrossRefGoogle Scholar
19. Koeneman, J.B., “An Improved 2-D Finite Element Model of the Proximal Femur,” 8th American Society of Biomechanics meeting, Tucson, Oct., 1984.Google Scholar
20. Hansen, T.M., Koeneman, J.B., “The Use of Structural Partitioning Within ANSYS to Solve Non-Linearties Within Human Hip Replacement Models,” Proceedings of 1987 ANSYS Conf. (1987).Google Scholar
21. Brown, R.H., Davy, D.T., Heiple, K.G. Sr, Kotzar, G.M., Heiple, K.G. Jr, Berilla, J., Goldberg, V.M., Beerstein, A.H., “In Vivo Load Measurements on a Total Hip Prosthesis,” 31st ORS (1985).Google Scholar
22. Hodge, W.A., Fijan, R., Mann, R.W., Harris, W.H., “Preliminary In Vivo Pressure Measurements in a Human Acetabulum,” 31st ORS (1985).Google Scholar