Skip to main content

Finite Element Simulations on Scaling Effects of 3D SiGe Thermoelectric Generators

  • Nicholas Williams (a1), Ali Gokirmak (a1) and Helena Silva (a1)

We report 3D finite element simulations analyzing scaling effects on the performance of single Silicon Germanium thermoelectric generator with 170 μm tall metal contacts. Temperature dependent material parameters are included to accurately model device performance. Power density was extracted for a range of widths, heights, and operating temperature. Depending upon cross sectional area of the SiGe leg and operating temperature, height can be optimized for maximum power density.

Hide All
[1]Rowe D. M., Thermoelectrics Handbook: Macro to Nano. DRC, 2006.
[2]Vashaee D. and Shakouri A., “Improved thermoelectric power factor in metal-based superlattices,” Phys. Rev. Lett., vol. 92, pp. 106103, 2004.
[3]Dresselhaus M. S., Chen G., Tang M. Y., Yang R. G., Lee H., Wang D. Z., Ren Z. F., Fleurial J.-P., Gogna P., “New Directions for Low-Dimensional Thermoelectric Materials,” Adv Mater, vol. 19, pp. 10431053, 2007.
[4]Dames C. and Chen G., “Thermal conductivity of nanostructured thermoelectric materials,” in Thermoelectrics Handbook Macro to Nano Rowe D. M., Ed. CRC, 2006, pp. 421426.
[5]Huxtable S. T., Abramson A. R., Tien C. L., Majumdar A., LaBounty C., Fan X., Zeng G., Bowers J. E., Shakouri A. and Croke E. T., “Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices,” Appl. Phys. Lett., vol. 80, pp. 1737, 2002.
[6]Poudel B., Hao Q., Ma Y., Lan Y., Minnich A., Yu B., Yan X., Wang D., Muto A. and Vashaee D., “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, vol. 320, pp. 634, 2008.
[7]Kyratsi T., Hatzikraniotis E., Ioannou M., Chung D. and Tsiaoussis I., “Seebeck and thermal conductivity analysis in amorphous/crystalline β-K2Bi8Se13 nanocomposite materials,” J. Appl. Phys., vol. 110, pp. 033713, 2011.
[8]Thacher E., Helenbrook B., Karri M. and Richter C. J., “Testing of an automobile exhaust thermoelectric generator in a light truck,” Proc. Inst. Mech. Eng. Pt. D: J. Automobile Eng., vol. 221, pp. 95107, 2007.
[9]Fairbanks J., “Thermoelectric applications in vehicles status 2008,” US Department of Energy,
[10]Rowe D. M.. Thermoelectric power for automobiles arrives in europe. ITS
[11]LaGrandeur J., Crane D. and Eder A., “Vehicle fuel economy improvement through thermoelectric waste heat recovery,” in Diesel Engine Emissions Reduction Conference, 2005, pp. 17.
[12]Sentaurus T., “Synopsys,” Inc., Z-2007.03 Edition, 2007.
[13]Snyder G. J. and Toberer E. S., “Complex thermoelectric materials,” Nature Materials, vol. 7, pp. 105114, 2008.
[14]Wachutka G. K., “Rigorous thermodynamic treatment of heat generation and conductionin semiconductor device modeling,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 9, pp. 11411149, 1990.
[15]Shi L., Yao D., Zhang G. and Li B., “Large thermoelectric figure of merit in SiGe nanowires,” Appl. Phys. Lett., vol. 96, pp. 173108, 2010.
[16]Li D., Wu Y., Philip K., Shi L., Yang P. and Majumdar A., “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett., vol. 83, pp. 2934, 10/06. 2003.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 84 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.