Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-31T11:31:10.605Z Has data issue: false hasContentIssue false

Formation and Orientation of Low Energy MgO/Pd, Al2O3/Pd and TiO2/Pd Interfaces

Published online by Cambridge University Press:  15 February 2011

Frederic Cosandey
Affiliation:
Mechanics and Materials Science, Rutgers University, Piscataway, NJ 08855-0909
Ping Lu
Affiliation:
Mechanics and Materials Science, Rutgers University, Piscataway, NJ 08855-0909
Get access

Abstract

Summary

The results of this study indicate that oriented α-Al2O3 and TiO2 particles with planar facets suitable for HREM studies can be produced in Pd by internal oxidation. A single high symmetry cube-on-cube orientation relationship has been observed for cubic MgO oxide particles in Pd. Six orientation relationships have been observed for trigonal α-Al2O3 oxide particles in Pd. Parallelism of the low misfit [1100]M// [110]O common direction appears to be the dominant factor for the preferred orientations with facets corresponding to parallelism of low index planes of Pd and α-Al2O3. For the tetragonal TiO2 phase in Pd, eight orientation relationships have been observed with orientations controlled primarily by oxide nucleation on {111} plane of Pd. For this system, the particle shape is controlled by anisotropy in growth kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wood, S., Adamonis, D., Guha, A., Soffa, W. A., Meier, G. H., Met. Trans. 6A, 1793 (1975).Google Scholar
2. Megusar, J., Meier, G. H., Met. Trans. 7A, 1133 (1976).Google Scholar
3. Bolsaitis, P., Hahlweit, M., Acta Metall. 15, 765 (1967).Google Scholar
4. Mahajan, S., Himmel, L., Acta Metall. 20, 1313 (1972).Google Scholar
5. Cahoreau, M., Dedieu, E., Denanot, M. F., Grobras, M., Acta Metall. 26, 1559 (1978).Google Scholar
6. Necker, G., Mader, W., Phil. Mag. Lett. 58, 205 (1988).Google Scholar
7. Muschik, T., Rühle, M., Phil. Mag. 65, 363 (1992).Google Scholar
8. Lu, P., Cosandey, F., Acta Metall. Mater. 40, S256 (1992).Google Scholar
9. Lu, P., Cosandey, F., Ultramicroscopy 40, 271 (1992).Google Scholar
10. Cosandey, F., Lu, P., Acta Metall. Mater 42, 1913 (1994).Google Scholar
11. Cosandey, F., Roth, L. D., Tien, J. K., Acta Metall. 31, 2029 (1983).Google Scholar
12. Kachaturyan, A. G., Theory of Structural Transformations in Solids (Wiley, New York, 1983).Google Scholar
13. Fratzl, P., Paris, O., Acta. Metall. Mater. 42, 2027 (1994).Google Scholar
14. Kato, M., Wada, M., Sato, A., Mori, T., Acta Metall. 37, 749 (1989).Google Scholar
15. Lu, P., Tung, I. C., Cosandey, F. in Structure and Properties of Interfaces in Materials, Clark, W., Dahmen, U. and Briant, C.L., Eds, MRS Proc. 238, 781 (1992).Google Scholar
16. Paris, O., Frazl, P., Langmayr, F., Vogl, G., Haubold, H. G., Acta Metall. Mater. 42, 2019 (1994).Google Scholar
17. Nolan, P. J., Grundy, P. J., J. Mater. Sci. 6, 1143 (1971).Google Scholar
18. Madey, T. E., Diebold, U., Pan, J. in Adsorption on Ordered Surfaces of Ionic Solids and Thin Films Freund, H. J., Umbachs, E., Eds., Springer-Verlag (1993)Google Scholar