Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T20:23:45.103Z Has data issue: false hasContentIssue false

Formation of Chemically Clean and Morphologically Smooth PtSi/Si Interfaces

Published online by Cambridge University Press:  21 February 2011

Suhit R. Das
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KlA 0R6, Canada
D-X. Xu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KlA 0R6, Canada
J. Phillips
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KlA 0R6, Canada
J. McCaffrey
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KlA 0R6, Canada
L. LeBrun
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario KlA 0R6, Canada
A. Naem
Affiliation:
Advanced Interconnects, Northern Telecom Limited, 185 Corkstown Road, Nepean, P.O. Box 3511, Station C, Ontario KlY 4H7, Canada
Get access

Abstract

PtSi/Si interfaces have been formed by depositing Pt layers on chemically cleaned, lightly doped, n-type Si (100) wafers in a UHV magnetron sputter-deposition system using ultra high purity Ar as the sputter gas, followed by ex-situ silicidation in N2 ambient utilizing a 3-step rapid thermal annealing (RTA) process. The polycrystalline PtSi layer, with oriented grains ranging in size from 50-100 nm, exhibits a columnar growth morphology. The PtSi/Si interface is planar with interface roughness in the order of 5 nm peak-to-peak. Auger depth profile shows uniform composition through the PtSi layer and a clean and chemically abrupt PtSi/Si interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Shur, M., Physics of Semiconductor Devices (Prentice Hall, New Jersey, 1990), p.306.Google Scholar
2 See, for example, Murarka, S.P., Metallization-Theory and Practice for VLSI and ULSI (Butterworth-Heinemann, Boston, 1993).Google Scholar
3 Naem, A.A., J. Appl. Phys. 64, 4161 (1988).Google Scholar
4 Tsaur, B.Y., Silversmith, D.J., Mountain, R.W., and Anderson, C.H. Jr., Thin Solid Films 93, 331 (1982).Google Scholar
5 Hewett, C.A., Fernandes, M.G., and Lau, S.S., J. Appl. Phys. 67, 524 (1990).Google Scholar
6 Hung, L.S., Mayer, J.W., Zhang, M., and Wolf, E.D., Appl. Phys. Lett. 43, 1123 (1983).Google Scholar
7 Wielunski, L.S., Lien, C.-D., Liu, B.X., and Nicolet, M-A., J. Vac. Sci. Technol. 20, 175 (1982).Google Scholar
8 Meuris, M., Heyns, M.M., Mertens, P.W., Verhaverbeke, S., and Philipossian, A., Microcontamination (May 1992), p.31.Google Scholar
9 Ohmi, T., Hashimoto, K., Morita, M., and Shibata, T., J. Appl. Phys. 69, 2062 (1991).Google Scholar
10 Das, S.R., Cook, J.G., Phipps, M., and Boland, W.E., Thin Solid Films 181, 227 (1989).Google Scholar