Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T18:05:07.740Z Has data issue: false hasContentIssue false

Formation of ZnAl2O4 and MgAl2O4 Spinel in Al2O3 by Ion Implantation

Published online by Cambridge University Press:  15 February 2011

C.W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6057
A. Meldrum
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6057
E. Sonder
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6057
J.D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6057
R.A. Zuhr
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6057
S.P. Withrow
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6057
D.O. Henderson
Affiliation:
Fisk University, Nashville, TN 37208
Get access

Abstract

ZnAl2O4 spinel has been formed in Al2O3 by ion implantation. Sequential implantation of Zn and 0 in overlapping profiles followed by annealing in Ar + H2 gives rise to a nearly continuous epitaxial layer of ZnAl2O4 oriented with (111) planes parallel to (0001) planes of Al2O3. If only Zn is implanted, then discrete bands of ZnAl2O4 oriented with (422) planes parallel to (0001) planes of Al2O3 are produced. By similar methods, oriented MgAl2O4 spinel also has been produced in Al2O3 by sequential Mg + O implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. White, C. W., Budai, J. D., Withrow, S. P., Zhu, J. G., Sonder, E., Zuhr, R. A., Meldrum, A., Hembree, D. M., Henderson, D. O., and Prawer, S., Nucl. Inst. & Methods in Phys. Res. B 141, 228 (1998).Google Scholar
2. Hunt, E. M. and Hampikian, J. M., J. Mat. Sci. 32, 3393 (1997).Google Scholar
3. Farlow, G. C., Sklad, P. S., White, C. W., and McHargue, C. J., J. Mat. Res. 5, 1502 (1990).Google Scholar
4. Ohkubo, M., Hioki, T., and Kawamoto, J., J. Appl. Phys. 60, 1325 (1986).Google Scholar
5. Bunn, L. A. and Sood, D. K., Mat. Res. Soc. Symp. Proc. 201, 417 (1991).Google Scholar
6. Mouritz, A. P., Sood, D. K., John, D. H. St., Swain, M. V., and Williams, J. S., Nucl. Inst. & Methods in Phys. Res. B 19/20, 805 (1987).Google Scholar
7. Devanathan, R., Yu, N., Sifkafus, K. E., and Nastasi, M., Nucl. Inst. & Methods in Phys. Res. B 127/128, 608 (1997).Google Scholar
8. Wang, L. M., Gong, W. L., Bordes, N., Ewing, R. C., and Fei, Y., Mat. Res. Soc. Symp. Proc. 373, 407 (1995).Google Scholar
9. Riebling, R. F., Mat. Res. Bull. 10, 895 (1975).Google Scholar
10. Reisfeld, R., Kisilev, A., Greenberg, E., Buch, A., and Ish-Shalom, M., Chem. Phys. Lett. 104, 153 (1984).Google Scholar
11. Nagata, K., Sato, K., and Goto, K. S., Met. Trans. 11B, 455 (1980).Google Scholar
12. Yamakawa, A., Hashiba, M., and Nurishi, Y., J. Mat. Science 24, 1491 (1989).Google Scholar
13. Branson, D. L., J. Am. Ceram. Soc. 48, 591 (1965).Google Scholar