Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T19:23:12.567Z Has data issue: false hasContentIssue false

Fractal and Non-Fractal Surfaces in Ion Sputtering

Published online by Cambridge University Press:  10 February 2011

A.-L. Barabási
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46656
R. Cuerno
Affiliation:
Center for Polymer Studies and Dept. of Physics, Boston University, Boston, MA 02215
Get access

Abstract

Recently a number of experimental studies focusing on the scaling properties of surfaces eroded by ion bombardment provided apparently contradictory results. A number of experiments report the observation of self-affine fractal surfaces, while others provide evidence about the development of a non-fractal periodic ripple structure. To explain these discrepancies, here we derive a stochastic nonlinear equation that describes the evolution and scaling properties of surfaces eroded by ion bombardment. The coefficients appearing in the equation can be calculated explicitly in terms of the physical parameters characterizing the sputtering process. We find that transitions may take place between various scaling behaviors when experimental parameters, such as the angle of incidence of the incoming ions or their average penetration depth, are varied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Barabási, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).Google Scholar
[2] Dynamics of Fractal Surfaces, Family, F. and Vicsek, T., eds. (World Scientific, Singapore,1991).Google Scholar
[3] Meakin, P., Phys. Rep. 235, 189 (1993).Google Scholar
[4] Halpin-Healey, T. and Zhang, Y.-C., Phys. Rep. 254, 215 (1995).Google Scholar
[5] Tong, W.M., and Williams, R.S., Annu. Rev. Phys. Chem. 45, 401 (1994).Google Scholar
[6] Sputtering by Particle Bombardment, Behrisch, R., ed. (Springer-Verlag, Heidelberg 1981, 1983), Vols. I, II, III.Google Scholar
[7] Handbook of Ion Beam Processing Technology, Cuomo, J.J., Rossnagel, S.M., and Kaufman, H.R. eds. (Noyes Publications, Park Ridge 1992).Google Scholar
[8] Beam, Ion Assisted Film Growth, Itoh, T. ed. (Elsevier, Amsterdam, 1989).Google Scholar
[9] Carter, G., Navingek, B. and Whitton, J. L. in Vol. II of Ref. [6], p. 231.Google Scholar
[10] Chason, E. et al., Phys. Rev. Lett. 72, 3040 (1994).Google Scholar
[11] Mayer, T. M., Chason, E. and Howard, A. J., J. Appl. Phys. 76, 1633 (1994).Google Scholar
[12] Chason, E., Mayer, T. M., and Payne, A., Appl. Phys. Lett. 60, 2353 (1992).Google Scholar
[13] Chason, E. and Mayer, T., Appl. Phys. Lett. 62, 363 (1993).Google Scholar
[14] MacLaren, S.W., Baker, J.E., Finnegan, N.L., and Loxton, C.M., J. Vac. Sci. Technol. A 10, 468 (1992).Google Scholar
[15] Eklund, E. A., et al., Phys. Rev. Lett. 67, 1759 (1991).Google Scholar
[16] Eklund, E. A., Snyder, E. J. and Williams, R. S., Surf. Sci. 285, 157 (1993).Google Scholar
[17] Krim, J. et al., Phys. Rev. Lett. 70, 57 (1993).Google Scholar
[18] Yang, H.-N., Wang, G.-C., and Lu, T.-M., Phys. Rev. B 50, 7635 (1994).Google Scholar
[19] Cuerno, R. and Barabisi, A.-L., Phys. Rev. Lett. 74, 4746 (1995).Google Scholar
[20] Family, F. and Vicsek, T., J. Phys. A 18, L75 (1985).Google Scholar
[21] Kardar, M., Parisi, G. and Zhang, Y.-C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar
[22] Kim, J. M. and Kosterlitz, J. M., Phys. Rev. Lett. 62, 2289 (1989).Google Scholar
[23] Forrest, B. M. and Tang, L., J. Stat. Phys. 60, 181 (1990).Google Scholar
[24] Amar, J.G. and Family, F., Phys. Rev. A 41, 3399 (1990).Google Scholar
[25] Moser, K., Wolf, D. E. and Kertdsz, J., Physica A 178, 215 (1991).Google Scholar
[26] Nissila, T. Ala et al., J. Stat. Phys. 72, 207 (1993).Google Scholar
[27] Edwards, S. F. and Wilkinson, D. R., Proc. R. Soc. London A 381, 17 (1982).Google Scholar
[28] Cuerno, R. and Barabási, A.-L., (unpublished).Google Scholar
[29] Sigmund, P., Phys. Rev. 184, 383 (1969).Google Scholar
[30] Sigmund, P., J. Mat. Sci. 8, 1545 (1973).Google Scholar
[31] Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A 6, 2390 (1988).Google Scholar
[32] Herring, C., J. Appl. Phys. 21, 301 (1950).Google Scholar
[33] Mullins, W.W., J. Appl. Phys. 28, 333 (1957).Google Scholar
[34] Wolf, D.E. and Villain, J., Europhys. Lett. 13, 389 (1990).Google Scholar
[35] Sarma, S. Das and Tamborenea, P. I., Phys. Rev. Lett. 66, 325 (1991).Google Scholar
[36] Villain, J., J. Phys. I 1, 19 (1991).Google Scholar
[37] In the expansion of (7) two additional nonlinearities are obtained on the rhs of Eqn. , where ξ x and ξ y are functions of a, σ, μ and θ [28]. One can see that ξ y are irrelevant at large length scales using the known values of α and z [22, 23, 24, 25, 26] for both the nonlinear and the linear fixed points in 2+1 dimensions.Google Scholar
[38] Wolf, D. E., Phys. Rev. Lett. 67, 1783 (1991).Google Scholar
[39] The relevance of the AKPZ equation to sputter erosion has been suggested by Bruinsma, R. in Surface Disordering: Growth, Roughening and Phase Transitions, Jullien, R.et al. eds. (Nova Science, New York, 1992).Google Scholar
[40] Kuramoto, Y. and Tsuzuki, T., Prog. Theor. Phys. 55, 356 (1977); G. I. Sivashinsky, Acta Astronaut. 6, 569 (1979).Google Scholar
[41] Zaleski, S., Physica D 34, 427 (1989); K. Sneppen et al. Phys. Rev. A 46, 7352 (1992); F. Hayot, C. Jayaprakash, and Ch. Josserand, Phys. Rev. E 47, 911 (1993); V. S. L'vov et al., Nonlinearity 6, 25 (1993).Google Scholar
[42] Procaccia, I. et al. Phys. Rev. A 46, 3220 (1992); V. S. L'vov and I. Procaccia, Phys. Rev. Lett. 69, 3543 (1992); ibid. 72, 307 (1994); C. Jayaprakash, F. Hayot, and R. Pandit, Phys. Rev. Lett. 71, 12 (1993); ibid. 72, 308 (1994).Google Scholar
[43] The terms −v 0 and ∂ x h can be reabsorbed by a change of variables to a comoving frame, and do not affect the scaling properties.Google Scholar
[44] Cuerno, R., and Lauritsen, K.B., Phys. Rev E 52, 4853 (1995).Google Scholar
[45] Our analysis describes the roughening process in the small slope approximation. However, at late stages additional non-linear effects, such as shadowing may become relevant [For a review see Bales, G. S. et al., Science 249, 264 (1990).]Google Scholar
[46] Rost, M., and Krug, J., Phys. Rev. Lett. 75, 3894 (1995).Google Scholar
[47] Cuerno, R., Makse, H.A., Tomassone, S., Harrington, S.T., and Stanley, H.E., Phys. Rev. Lett. (in press).Google Scholar
[48] Barabisi, A.-L. and Makeev, M. (to be published).Google Scholar