Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-22T10:13:57.758Z Has data issue: false hasContentIssue false

Fractals in Porous Media: From Pore to Field Scale

Published online by Cambridge University Press:  03 September 2012

Muhammad Sahimi
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089-1211
Hossein Rassamdana
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089-1211
Alireza Mehrabi
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089-1211
Get access

Abstract

Two applications of fractal concepts to problems involving porous media are discussed. One of them occurs at the pore level and involves the formation of large molecular aggregates as the result of injecting a fluid into an oil reservoir, or because of compositional changes in the oil. Formation of such aggregates and their precipitation on the pore surfaces cause severe problems for enhanced recovery of oil, and also many processes which use porous catalysts. We argue that these molecular structures are similar to diffusion-limited cluster-cluster aggregates, and small-angle neutron scattering data support our argument. The second application involves field-scale distributions of the porosity and permeability of oil reservoirs. We show that, contrary to the recent assertions that such distributions are described by fractional Brownian motion or fractional Gaussian noise with positive correlations (persistence), they are described by Lévy distributions with negative correlations (anti-persistence).

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Family, F. and Vicsek, T. (eds.), Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).Google Scholar
2. Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
3. Feder, J., Fractals (Plenum, New York, 1988).Google Scholar
4. Avnir, D. (ed.), The Fractal Approach to Heterogeneous Chemistry (Wiley, New York, 1990).Google Scholar
5. Bunde, A. and Havlin, S. (eds.), Fractals and Disordered Systems (Springer, Berlin, 1991).Google Scholar
6. Vicsek, T., Fractal Growth Phenomena, 2nd ed. (World Scientific, Singapore, 1992).Google Scholar
7. Sahimi, M., Flow and Transport in Porous Media and Fractured Rock (VCH, Weinheim, Germany, 1995).Google Scholar
8. Sahimi, M., Rev. Mod. Phys. 65, 1393 (1993).Google Scholar
9. Sahimi, M., Gavalas, G. R., and Tsotsis, T. T., Chem. Eng. Sci. 45, 1343 (1990).Google Scholar
10. Sahimi, M., Chemtech 22, 687 (1992).Google Scholar
11. Sahimi, M., Tsotsis, T. T., and Gavalas, G. R., Statistical and Continuum Models of Fluid-Solid Reactions in Porous Media (Oxford University Press, New York, in press).Google Scholar
12. Sahimi, M., Physica A 186, 160 (1992).Google Scholar
13. Sahimi, M., Robertson, M. C., and Sammis, C. G., Phys. Rev. Lett. 70, 2186 (1993).Google Scholar
14. Sahimi, M., Applications of Percolation Theory (Taylor and Francis, London, 1994).Google Scholar
15. Drake, K., Bauer, J., Serafini, T., and Cheng, P. (eds.), Moving Forward with 50 Years of Leadership in Advanced Materials, Proceedings of the 39th International SAMPE Symposium and Exhibition (Society for the Advancement of Material and Process Engineering, Anaheim, California, 1994).Google Scholar
16. Hewett, T. A., Society of Petroleum Engineers paper 15386, New Orleans, LA (1986).Google Scholar
17. Hewett, T. A. and Behrens, R. A., SPE Form. Eval. 5, 217 (1990).Google Scholar
18. See, e.g., Moschopedis, S. E., Fryer, J. F., and Speight, J. G., Fuel 55, 227 (1976).Google Scholar
19. Speight, J. G., The Chemistry and Technology of Petroleum (Marcel Dekker, New York, 1991).Google Scholar
20. Anderson, J. L. and Quinn, J. A., Biophys. J. 14, 130 (1974).Google Scholar
21. Brenner, H. and Gaydos, L. J., J. Colloid Interface Sci. 58, 312 (1977).Google Scholar
22. Deen, W. M., AIChE J. 33, 1409 (1987).Google Scholar
23. Sahimi, M., J. Chem. Phys. 96, 4718 (1992).Google Scholar
24. Baltus, R. E. and Anderson, J. L., Chem. Eng. Sci. 38, 1959 (1983).Google Scholar
25. Ravi-Kumar, V. S., Tsotsis, T. T., Sahimi, M., and Webster, I. A., Chem. Eng. Sci. 49 (December 1994).Google Scholar
26. Savage, P. E. and Klein, M. T., Chem. Eng. Sci. 44, 393 (1989).Google Scholar
27. Trauth, D. M., Stark, S. M., Petti, T. F., Neurock, M., and Klein, M. T., Energy and Fuels 8, 576 (1994).Google Scholar
28. Hirschberg, A., Jong, L. N. J. de, Schipper, B. A., and Meijer, J. G., SPE J. 24, 283 (1984).Google Scholar
29. Rassamdana, H., Dabir, B., Nemati, M., Farhani, M., and Sahimi, M., AIChE J. (in press).Google Scholar
30. Rassamdana, H. and Sahimi, M., Fuel (to be published).Google Scholar
31. Sahimi, M. and Rassamdana, H., Phys. Rev. Lett. (submitted).Google Scholar
32. Overfield, B., Shue, E. Y., Liang, K. S., and Sinha, S. K., Fuel Sci. & Tech. Int. 7, 611 (1989).Google Scholar
33. Shue, E. Y., Liang, K. S., Sinha, S. K., and Overfield, R. E., J. Colloid Interface Sci. 153, 399 (1992).Google Scholar
34. Schaefer, D. W., Martin, J. E., Wiltzuis, P., and Cannel, D. S., Phys. Rev. Lett. 52, 2371 (1984).Google Scholar
35. Meakin, P., in Phase Transitions and Critical Phenomena, vol. 12, edited by Domb, C. and Lebowitz, J. L. (Academic, London, 1988), p. 335.Google Scholar
36. Ziff, R. M., McGrady, E. D., and Meakin, P., J. Chem. Phys. 82, 5269 (1985).Google Scholar
37. Hurst, H. E., Trans. Amer. Soc. Civil Eng. 116, 770 (1951).Google Scholar
38. Mandelbrot, B. B. and Ness, J. W. Van, SIAM Rev. 10, 422 (1968).Google Scholar
39. Painter, S. and Paterson, L., Geophys. Res. Lett. (in press).Google Scholar
40. Shlesinger, M. F., Annu. Rev. Phys. Chem. 39, 269 (1987).Google Scholar
41. Mehrabi, A., Rassamdana, H., and Sahimi, M. (to be published).Google Scholar