Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-10T10:28:14.902Z Has data issue: false hasContentIssue false

From Facets to Fractals - Growth Morphologies in Molecular Crystals of Carbon Tetrabromide (Cbr4) and Fullerene C60

Published online by Cambridge University Press:  03 September 2012

Rong-Fu Xiao*
Affiliation:
Department of Physics, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
Get access

Abstract

We have experimentally studied the growth morphologies of carbon tetrabromide CBr4 and fullerene C60crystals in their orientationally disordered solid phases. Very rich growth morphologies have been observed from these crystals, ranging from facets to dendrites and to fractals. In the vapor growth of CBr4crystals, we found that the growth morphologies depend not only on temperature and supersaturation, but also sensitively on the total pressure of the inert gas in the growth chamber. With increasing total pressure, under otherwise the same growth conditions, crystals with initially smooth surfaces evolve into dendritic structures. For fullerene C60, the growth morphologies from solution are mainly fractals with strong anisotropy in the individual crystals. The growth morphologies from vapor are normally faceted and the growth proceeds via a layer-by-layer mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H., and Sawada, Y., Phys. Rev. Lett. 53 (1984) 286; Y. Sawada, A. Dougherty, and Gollub, J.P., Phys. Rev. Lett. 56 (1986) 1260.Google Scholar
[2] Weitz, D.A., and Oliveria, M., Phys. Rev. Lett. 52 (1984) 1433.Google Scholar
[3] Nittmann, J., Daccord, G., and Stanley, H.E., Nature 314 (1985) 141.Google Scholar
[4] Fujikawa, H. and Matsushita, M., J. Phys. Soc. Jpn. 58 (1989) 3875.Google Scholar
[5] Noever, D.A., Phys. Rev. Lett. 65 (1990) 1953.Google Scholar
[6] Glicksman, M.E., in Proc. Indo-United States Workshop on Solidification Principles and Matastable Microstructures, Hyderabad, Jan. 1988; S.-C. Huang, and M.E. Glicksman, Acta Metall. 29 (1981) 707 and 717; J.P. Gollub, in Nonlinear Phenomena Related to Growth and Form, edited by M. Ben Amar, P. Pelce, and P. Tabeling (Plenum, 1991).Google Scholar
[7] Nakaya, U., Snow Crystals (Harvard Univ., Cambridge, MA, 1954); T. Kobayashi, and T. Kuroda, in Morphology of Crystals, edited by I. Sunagawa (Terra Sci., Tokyo, 1987), Part B, p. 645, and references therein.Google Scholar
[8] Tung, R.T., and Schrey, F., Phys. Rev. Lett. 63 (1989) 1277; K. Kato, Y. Hasumi, A. Kozen, and J. Temmyo, J. Appl. Phys. 65 (1989) 1947.Google Scholar
[9] Xiao, R.-F., and Rosenberger, F., J. Crystal Growth 114, 549 (1991).Google Scholar
[10] Timmermans, J., J. Phys. Chem. Solids 18, 1 (1961); R.M. Hooper, and J.N. Sherwood, in:Surface and Defect Properties of Solids, Vol. 6 (Chemical Soc., London, 1977) p. 308.Google Scholar
[11] Xiao, R.-F. and Rosenber, F., J. Crystal Growth 114, 536 (1991); R.-F. Xiao, Phys. Rev. E 47, 3463 (1993).Google Scholar
[12] Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., Nature 318, 162 (1985); W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990).Google Scholar
[13] Xiao, R.-F., Ho, W.C., Chow, L.Y., Fung, K.K. and Zheng, J.Q., Appl. Phys. Lett., accepted.Google Scholar
[14] Xiao, R.-F., Alexander, J.I.D., and Rosenber, F., J. Crystal Growth 109, 43 (1991).Google Scholar
[15] David, W.I.F., Ibberson, R.M., Dennis, T.J.S., Hare, J.P., and Prassides, K., EuroPhys Lett. 18, 219 (1992).Google Scholar