Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T01:29:20.602Z Has data issue: false hasContentIssue false

Functionalization of C60 by Cycloaddition Reactions

Published online by Cambridge University Press:  15 February 2011

Stephen R. Wilson
Affiliation:
Department of Chemistry, New York University, New York, NY 10003
Jingrong Cao
Affiliation:
Department of Chemistry, New York University, New York, NY 10003
Qingyi Lug
Affiliation:
Department of Chemistry, New York University, New York, NY 10003
Yunhui Wu
Affiliation:
Department of Chemistry, New York University, New York, NY 10003
Nikolaos Kaprinidas
Affiliation:
Department of Chemistry, New York University, New York, NY 10003
George Lem
Affiliation:
Department of Chemistry, New York University, New York, NY 10003
Martin Saunders
Affiliation:
Department of Chemistry, Yale University, New Haven, CT 06520
Hugo A. Jimenez-Vasquez
Affiliation:
Department of Chemistry, Yale University, New Haven, CT 06520
David I. Schuster
Affiliation:
Department of Chemistry, New York University, New York, NY 10003
Get access

Abstract

Functionalization of C60 has been achieved by [2+2] photocycloaddition reactions of enones and [2+4] cycloaddition reactions of dienes, the course of these reactions can be followed using electrospray mass spectrometry using a special tagging reagent. Using tagged C60 it was shown that cis and trans cycloadducts are formed from ketones such as 3-methylcyclohexenone. We have also employed the new technique of 3He NMR spectrometry. 3He is an NMR-active nucleus. Fullerenes containing an endohedral 3He atom can be examined by NMR to obtain structural information and potentially determine isomer distributions. Examples, of helium spectra of fullerene hydrides are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “So Far Fullerene Studies Dominate Chemical Citations in the 1990's”, The Scientist, Oct 31, 1994, p14.Google Scholar
2. (a) “Buckminsterfullerene”, Billups, W.E., Cuifolini, M.A., eds, VCH Publishing Co., NY 1993. (b) “Fullerenes, K.M. Kadish, R.S. Ruoff, Electrochemical Society, Pennington, NJ 1994.Google Scholar
3. Wilson, S.R., Kaprinidis, N., Wu, Y., Schuster, D.I., J. Amer. Chem Soc., 115, 10334 (1993)Google Scholar
4. Wilson, S.R. and Wu, Y., J. C. S. Chem.Commun, 1993, 784.Google Scholar
5. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., Nature, 318, 162 (1985).Google Scholar
6. Saunders, M., Jimenez-Vasquez, H.A., Cross, R.J., and Poreda, R.J., Science, 259, 1428 (1993).Google Scholar
7. Saunders, M., Jimenez-Vasquez, H.A., Cross, R.J., Mroczkowski, S., Freedberg, D.I. and Anet, F. A.L., Nature, 367, 256258 (1994)Google Scholar
8. Kartha, S. and Grimes, P., Phys. Today, 1994, 54.Google Scholar
9. Zhao, H., PhD thesis, New York University, 1994.Google Scholar
10. Henderson, C.C. and Cahill, P.A., Science, 259 1885 (1993).Google Scholar
11. Avent, A.G., Darwish, A.D., Heimbach, D.K., Kroto, H.W., Meidine, M.F., Parsons, J.P., Remars, C., Roers, R., Ohashi, O., Taylor, R., Walton, D.R.M., J. C. S. Perkin Trans 2, 1994, 15.Google Scholar
12. Hawkins, J.M., Meyer, A., Lewis, T.A., Bunz, U., Nunlist, R., Ball, G.E., Ebbeson, T.W., Tanigaki, K., J Amer Chem Soc, 114, 7954 (1992).Google Scholar
13. Hirsch, A. Lamparth, I., Karfunkel, H.R., Angew Chem Int Ed Engl, 33, 437 (1994).Google Scholar
14. Henderson, C.C., Rohlfing, C.M., Assink, R.A., and Cahill, P.A., Angew Chem Int Ed Engl, 33, 786 (1994).Google Scholar