Skip to main content

Functionalization of Nanofibrous Spiral Structured Scaffolds for Bone Tissue Engineering

  • Junping Wang (a1) and Xiaojun Yu (a2)

In the previous studies, we have successfully developed a novel spiral structured nanofibrous scaffolds with improved osteoconductivity for bone tissue engineering. The spiral structure design facilitates the nutrient transport and waste removal, and allows uniform cellular growth and distribution within the scaffolds, thus enhanced the bioactivity of the scaffolds. In this chapter, HAP and BMP-2 were incorporated within the nanofibrous spiral scaffolds in order to enhance the osteoinductivity of the established system. The effect of the blending materials was evaluated through cell proliferation, cell differentiation of human osteoblast cells seeded on the scaffolds and cultured for 4 and 8 days. The results has demonstrated that the functionalization of PCL nanofibrous spiral scaffolds leads to higher ALP expression level and increased amount of mineralization level however lower cell proliferation rate.

Hide All
1 Wang, J, CM, Valmikinathan, Liu, W, CT, Laurencin, Yu, X J Biomed Mater Res A. 2009 Jul 29
2 Supová, M J Mater Sci Mater Med. 2009 Jun;20(6):1201–13.
3 GL, Converse, TL, Conrad, RK, Roeder. J Mech Behav Biomed Mater. 2009 Dec;2(6):627–35.
4 CI, Boissard, PE, Bourban, AE, Tami, Alini, M, Eglin, D. 2009 Nov;5(9):3316-27.
5 Guarino, V, Taddei, P, Di Foggia, M, Fagnano, C, Ciapetti, G, Ambrosio, L. Tissue Eng Part A. 2009 Jun 4.
6 Xiao, X, Liu, R, Huang, Q, Ding, X J Mater Sci Mater Med. 2009 Jul 2
7 Causa, F, PA, Netti, Ambrosio, L, Ciapetti, G, Baldini, N, Pagani, S, Martini, D, Giunti, A. J Biomed Mater Res A. 2006 Jan;76(1):151–62.
8 JR, Venugopal, Low, S, AT, Choon, AB, Kumar, Ramakrishna, S Artif Organs. 2008 May;32(5):388–97.
9 KH, Tan, CK, Chua, KF, Leong, CM, Cheah, WS, Gui, WS, Tan, FE, Wiria. Biomed Mater Eng. 2005;15(1-2):113–24.
10 Taddei, P, Di Foggia, M, Causa, F, Ambrosio, L, Fagnano, C Int J Artif Organs. 2006 Jul;29(7):719–25
11 Fabbri, P, Bondioli, F, Messori, M, Bartoli, C, Dinucci, D, Chiellini, F J Mater Sci Mater Med. 2009 Aug 4
12 Nadra, I, AR, Boccaccini, Philippidis, P, LC, Whelan, GM, McCarthy, DO, Haskard, RC, Landis. 2008 J Mater Sci Mater Med Jan;196(1):98105
13 JM, Curran, JA, Gallagher, JA, Hunt. 2005 Sep;26(26):5313-20
14 Dong, X, Wang, Q, Wu, T, Pan, H. Biophys J. 2007 Aug 1;93(3):750–9.
15 Ono, I, Gunji, H, Kaneko, F, Saito, T, Kuboki, Y. J Craniofac Surg. 1995 May;6(3):238–44.
16 Kamegai, A, Shimamura, N, Naitou, K, Nagahara, K, Kanematsu, N, Mori, M. Biomed Mater Eng. 1994;4(4):291307.
17 Ono, I, Ohura, T, Murata, M, Yamaguchi, H, Ohnuma, Y, Kuboki, Y. Plast Reconstr Surg. 1992 Nov;90(5):870–9.
18 Yu, H, HW, Matthew, PH, Wooley, SY, Yang. J Biomed Mater Res B Appl Biomater. 2008 Aug;86B(2):541–7.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 40 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th August 2018. This data will be updated every 24 hours.