Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T17:27:26.062Z Has data issue: false hasContentIssue false

GaN Growth by Remote Plasma MOCVD: Chemistry and Kinetics by Real Time Ellipsometry

Published online by Cambridge University Press:  15 February 2011

M. Losurdo
Affiliation:
Plasma Chemistry Research Center-CNR, via Orabona 4- 70126 Bari, Italy, cscpmll8@area.ba.cnr.it
P. Capezzuto
Affiliation:
Plasma Chemistry Research Center-CNR, via Orabona 4- 70126 Bari, Italy, cscpmll8@area.ba.cnr.it
G. Bruno
Affiliation:
Plasma Chemistry Research Center-CNR, via Orabona 4- 70126 Bari, Italy, cscpmll8@area.ba.cnr.it
Get access

Abstract

Cubic and hexagonal GaN layers have been grown on GaAs (001) and α-Al2O3 (0001) substrates, respectively, by remote plasma metalorganic chemical vapor deposition (RPMOCVD). In situ spectroscopic ellipsometry is used to monitor in real time the chemistry and kinetics of the GaN growth. The subtrate/GaN interface formation is highlighted and the effect of the substrate plasma nitridation on the initial growth stage is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
[2] Moustakas, T.D., Lei, T., Molnar, R.J., Physica B, 185, 36 (1993).Google Scholar
[3] Wang, K., Pavlidis, D., Singh, J., J. Appl. Phys. 80, 1823 (1996).Google Scholar
[4] Daudin, B., Widmann, F., Feuillet, G., Samson, Y., Arlery, M., Rouviere, J.L., Phys. Rev. B, 56, R7069 (1997).Google Scholar
[5] Bruno, G., Capezzuto, P., Losurdo, M., Phys. Rev. B, 54, 17175 (1996).Google Scholar
[6] Aspnes, D.E., J. Phys. (Paris) Colloq. 10, 3 (1983)Google Scholar
[7] Losurdo, M., Capezzuto, P., Bruno, G., Irene, E.A., Phys. Rev. B, 58, 1 (1998).Google Scholar
[8] Tarsa, E.J., Heying, B., Wu, X.H., Fini, P., DenBaars, S.P., Speck, J.S., J. Appl. Phys. 82, 5472 (1997)Google Scholar
[9] Gwo, S., Tokumoto, H., Miwa, S., Appl. Phys. Lett. 71, 362 (1997).Google Scholar
[10] Yang, H., Brandt, O., Wassermeier, M., Behrend, J., Schonherr, H.P., Ploog, K.H., Appl. Phys. Lett., 68, 244 (1996).Google Scholar
[11] Cheng, T.S., Jenkins, L.C., Hooper, S.E., Foxon, C.T., Orton, J.W., Lacklison, D.E., Appl. Phys. Lett., 66, 1509 (1995).Google Scholar
[12] Edgar, J.H., Properties of Group III Nitrides, EMIS Datareviews Series No. 11, INSPEC, London, United Kingdom, 1994.Google Scholar
[13] Brandt, O., Yang, H., Jenichen, B., Suzuki, Y., Daweritz, L., Ploog, K.H., Phys. Rev. B, 52, R2253 (1992).Google Scholar
[14] Kikuchi, A., Hoshi, H., Kishino, K., Jpn. J. Appl. Phys. 33, 688 (1994).Google Scholar
[15] Brandt, O., Yang, H., Trampet, A., Wassermeier, M., Ploog, K.H., Appl. Phys. Lett, 71, 473 (1997).Google Scholar
[16] Losurdo, M., Capezzuto, P., Bruno, G., Lefebvre, P.R., Irene, E.A., J. Vac. Sci. Technol. B, 16, 2665 (1998).Google Scholar
[171 Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).Google Scholar
[18] Keller, S., Keller, B.P., Wu, Y.F., Heying, B., Kapolnek, D., Speck, J.S., Mishra, U.K., S.P. DenBaars, Appl. Phys. Lett. 68, 1525 (1996)Google Scholar
[19] Uchida, K., Watanabe, A., Yano, F., Kouguchi, M., Tanaka, T., Minagawa, S., J. Appl. Phys. 79, 3487 (1996).Google Scholar