Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-15T18:55:00.928Z Has data issue: false hasContentIssue false

GaN Quantum Dots in AlxGa1-xN Confined Layer Structures

Published online by Cambridge University Press:  10 February 2011

Satoru Tanaka
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-01, Japan,
Hideki Hirayama
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-01, Japan,
Sohachi Iwai
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-01, Japan,
Yoshinobu Aoyagi
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-01, Japan,
Get access

Abstract

Nanoscale GaN quantum dots were fabricated in AlxGa1-xN confined layer structures via metalorganic chemical vapor deposition (MOCVD), by using a ‘surfactant’ which can modify the GaN growth mode on AlGaN surfaces. A two dimensional growth mode (step-flow-like) of GaN films on AlxGa1-xN (x=0∼0.2) surfaces, that is energetically commenced under the conventional growth conditions, was intentionally changed into a three dimensional mode by adding tetraethyl-silane (TESi) used as a surfactant onto the AlGaN substrate surface prior to the GaN deposition. The surfactant is believed to inhibit the GaN film from wetting the AlGaN surface due to the change in surface free energy. The resulting morphological structures of GaN dots were found to be sensitive to; the doping rate of TESi, the Al content (x) of the AlxGa1-xN layer, and the growth temperature. A very intense photoluminescence (PL) emission was observed from the GaN dots embedded in the AlGaN layers. The quantum size effect in terms of the blue-shift in a PL peak position was verified using the GaN dot samples having different dot sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahara, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2. Nakamura, S., Senoh, M., Nagahara, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Appl. Phys. Lett. 68, 2105 (1996).Google Scholar
3. Monemar, B., Phys. Rev. B10, 676 (1974).Google Scholar
4. Kawakami, Y., Peng, Z. G., Narukawa, Y., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 69, 1414 (1996).Google Scholar
5. Leonard, D., Kishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
6. Notzel, R., Temmyo, J., and Tamamura, T., Nature 369, 131 (1994).Google Scholar
7. Oshinowo, J., Nishioka, M., Ishida, S., and Arakawa, Y., Appl. Phys. Lett. 65, 1421 (1994).Google Scholar
8. Carlsson, N., Seifert, W., Petersson, A., Castrillo, P., Pistol, M. -E., and Samuelson, L., Appl. Phys. Lett. 65, 3093 (1994).Google Scholar
9. Sopanen, M., Lipsanen, H., and Ahopelto, J., Appl. Phys. Lett. 67, 3768 (1995).Google Scholar
10. Ponchet, A., Corre, A. L., L’Haridon, H., Lambert, B., and Salaün, S., Appl. Phys. Lett. 67, 1850 (1995).Google Scholar
11. Stranski, I. N. and Krastanow, V. L., Akad. Wiss. Lit. Mainz Math. Natur. Kl. Iib 146, 797 (1939).Google Scholar
12. Dmitriev, V., Irvine, K., Zubrilov, A., Tsvetkov, D., Nikolaev, V., Jakobson, M., Nelson, D., and Sitnikova, A., in Gallium Nitride and Related Materials, edited by Dupuis, R. D., Edmond, J. A., Ponce, F. A., and Nakamura, S. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, PA, 1996) pp. 295.Google Scholar
13. Copel, M., Reuter, M. C., Kaxiras, E., and Tromp, R. M., Phys. Rev. Lett. 63, 632 (1989).Google Scholar
14. Tanaka, S., Iwai, S., and Aoyagi, Y., J. Cryst. Growth (in press).Google Scholar
15. Sakai, A. and Tatsumi, T., Phys. Rev. Lett. 71, 4007 (1993).Google Scholar
16. Osten, H. J., Klatt, J., Lippert, G., Dietrich, B., and Bugiel, E., Phys. Rev. Lett. 69, 450 (1992).Google Scholar
17. Eaglesham, D. J., Unterwald, F. C., and Jacobson, D. C., Phys. Rev. Lett. 70, 966 (1993).Google Scholar
18. Iwanari, S. and Takayanagi, K., Jpn. J. Appl. Phys. 30, L1978 (1991).Google Scholar