Skip to main content Accessibility help

GaP Nanostructures: Nanowires, Nanobelts, Nanocables, and Nanocapsules

  • Hee Won Seo (a1), Seung Yong Bae (a1) and Jeunghee Park (a1)


Various GaP nanostructures such as nanowires, nanobelts, nanocables, and nanocapsules were synthesized by sublimation of ball-milled powders. They have a single-crystalline zinc blende structure with [111] growth direction. The morphology and structure were controlled by reactant gas, growth time, flow rate, and growth temperature. The size, morphology and properties of the nanostructures were examined by scanning electron microscopy, transmission electron microscopy, electron energy-loss spectroscopy (EELS), electron diffraction, energy dispersive x-ray spectroscopy, powder x-ray diffraction, and Raman spectroscopy using a 514.5 nm argon ion laser. The photoluminescence was carried out using the 458 nm line of an argon ion laser as the excitation source. The GaP nanowires are straight, cylindrical, and smooth in surface, with mean diameter of 40 nm and length up to 300 mm. The nitrogen-doped nanobelts and nanowires were synthesized by ammonia ambient gas. EELS data reveals that the nitrogen doping occurs mainly in the surface region. The PL spectrum shows the typical isoelectronic bound exciton peaks in the range of 2.11∼2.25 e V, suggesting a concentration of (1018 cm-3 nitrogen atoms. We also synthesized two types of GaP nanocables; GaP nanowire sheathed with the amorphous silicon oxide layers and with the graphite layers. The core-shell diameter is under 30 nm and the outerlayer can be removed by acid treatment to produce the 10 nm diameter GaP nanowires. The GaP encapsulated with BCN nanotubes were synthesized under the ammonia flow using the ball-milled carbon-containing boron oxide powders. The number of BCN layers is typically 10∼20.



Hide All
1. Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).
2. Duan, X., Huang, Y., Cui, Y., Wang, J., Lieber, C. M., Nature (London) 409, 66 (2001).
3. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., Lieber, C. M., Nature (London) 415, 617(2002).
4. Lauhon, L. J., Gudiksen, M. S., Wang, D., Lieber, C. M., Nature (London) 420, 57 (2002).
5. Duan, X., Huang, Y., Agarwal, R., Lieber, C. M., Nature (London) 421, 241 (2003).
6. Choi, H. J., Johnson, J. C., He, R., Lee, S. –K., Kim, F., Pauzauskie, P.; Goldberger, J.; Saykelly, R. J.; Yang, P. J. Phys. Chem. B 107, 8721 (2003).
7. Duan, X., Lieber, C. M., Adv. Mater. 12, 298 (2000).
8. Tang, C., Fan, S., Chapelle, M. Lamy de la, Dang, H., Li, P., Adv. Mater. 12, 1346 (2000).
9. Shi, W. S., Zheng, Y. F., Wang, N., Lee, C. S., Lee, S. T., J. Vac. Sci. Technol. B 19, 1115(2001).
10. Seo, H. W., Bae, S. Y., Park, J., Yang, H., Kim, S., Chem. Commun. 2564 (2002).
11. Seo, H. W., Bae, S. Y., Park, J., Yang, H., Kang, M., Kim, S., Appl. Phys. Lett. 82, 3752 (2003).
12. Seo, H. W., Bae, S. Y., Park, J., Kang, M., Kim, S., Chem. Phys. Lett. 378, 420 (2003).
13. Pankove, J. I., Optical processes in Semiconductors, Dover, New York (1971)
14. Bazhenov, V. K. and Fistul', V. I., Sov. Phys. Semicond. 18, 843 (1984).
15. Nasibov, A. S., Mel'nik, N. N., Ponomarev, I. V., Romanko, S. V., Topchii, S. B., Obraztsov, A. N., Yu Bashtanov, M., Krasnovskii, A. A., Quantum Electron. 28, 40 (1998).
16. Tuinstra, F., Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).
17. Yap, Y. K., Yoshimura, M., Mori, Y., Sasaki, T., Appl. Phys. Lett. 80, 2559 (2002).
18. Zhi, C. Y., Bai, X. D., Wang, E. G., Appl. Phys. Lett. 80, 3590 (2002).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed