Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T09:25:16.306Z Has data issue: false hasContentIssue false

Germanium Redistribution Phenomena in the Synthesis of SiGe Layers

Published online by Cambridge University Press:  03 September 2012

C. J. Patel
Affiliation:
Middlesex University, Microelectronics Research Centre, Bounds Green Road, London, UK
J. B. Butcher
Affiliation:
Middlesex University, Microelectronics Research Centre, Bounds Green Road, London, UK
Get access

Abstract

A unique germanium redistribution phenomenon occurs in the synthesis of SiGe by 74Ge+ ion implantation. A number of silicon samples were implanted with 74Ge+ ion using a range of substrate temperatures (R.T. to 600°C) with different germanium fluences (1.5 × 1016 cm-2 to 4 × 1016 cm-2) and implantation energies (100keV – 18OKeV). Samples were germanium profiled using Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS).The experimental results show that the peak range of the germanium implant increases progressively above 150°C and a shift of 40nm in the peak germanium range was measured for a sample implanted at 600°C. The ‘hot’ implants have an extended tail profile contrary to the Debye model for root-mean-square deviations of the lattice atoms from their equilibrium sites which should ideally contribute to dechanneling. The data suggest strongly that dynamic annealing related diffusion (DARD) processes exist, whereby mobile non-equilibrium point defects influence diffusion to take place at the elevated implantation temperature. The SIMS spectra of samples implanted with high Ge fluences at elevated temperature show “uphill” diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Selvakumar, C.R. and Hecht, B., IEEE Electron Dev. Lett. 12, 444 (1991).Google Scholar
2. Jiang, H. and Elliman, R.G., I EEE Trans. Electron Dev. 43, (1) 97 (1996).Google Scholar
3. Fukami, A., Shoji, K., Nagano, T, Tokuyama, T., and Yang, C.Y., Microelectron. Eng. 15, 15 (1991).Google Scholar
4. Lambardo, S., Pinto, A., Raincri, V., Ward, P., and Campisano, S.U., IEEE IEDM'95, 101 (1995).Google Scholar
5. Claverie, A., Bonafos, C., Martinez, A., and Alquier, D., Sol-Stat. Phenomena, 47–48 195 (1996)Google Scholar
6. Simpson, T.W., Goldbcrg, R.D., and Mitchell, I.V., IEEE Electron Dev. Lett. 67, (19) 285 (1995).Google Scholar
7. Lambardo, S., Priolo, F., Campisano, S.U., Lagomarsino, S., IEEE Electron Dev. Lett. 62, (19) 2335 (1993).Google Scholar
8. Cristiano, F., Zhang, J.P., Wilson, R.J., Gillin, W.P., Hemment, P.L.F., Nucl. Instr. and Meth., B96 265 (1995).Google Scholar
9. Im, S., Washburn, J., and Gronsky, R., Cheung, N.W., Yu, K.M., IEEE Electron Dev. Lett. 63, (7) 929 (1993).Google Scholar
10. Hollander, B., Mantel, S., Michelsen, W., and Mesters, S.., Nuel. Inst. Meth., B80–81, 777 (1993).Google Scholar
11. Patel, C.J., Marsh, C.D., Magnusson, U., Jeynes, C., Ostling, M., Norstrom, H., Booker, G.R., and Butcher, J.B., Mat. Res. Soc. Proc. 316, 825 (1994).Google Scholar
12. Stolk, P.A., Gossmann, H-J., Eaglesham, D.J., Poate, J.M., Nucl. Inst. Meth., B96, 187 (1995).Google Scholar
13. Suprun-Belevich, Yu. R., Palmetshofer, L., Nucl. Inst. Meth., B96, 245 (1995).Google Scholar
14. Hofler, A., Feudel, T., Liegmann, A., Strecker, N., Kataoka, Y., Suzuki, K, Sasaki, N., Simul. Semi. Dev. Process. 6, 448 (1995).Google Scholar
15. Maszara, W.P. and Rozgonyi, G.A., J. Appl. Phys, 60 (7) 2310 (1986).Google Scholar