Skip to main content
×
×
Home

Graphyne Oxidation: Insights From a Reactive Molecular Dynamics Investigation

  • L. D. Machado (a1), P. A. S. Autreto (a1) and D. S. Galvao (a1)
Abstract
ABSTRACT

Graphyne is a generic name for a family of carbon allotrope two-dimensional structures where sp2 (single and double bonds) and sp (triple bonds) hybridized states coexists. They exhibit very interesting electronic and mechanical properties sharing some of the unique graphene characteristics. Similarly to graphene, the graphyne electronic properties can be modified by chemical functionalization, such as; hydrogenation, fluorination and oxidation. Oxidation is of particular interest since it can produce significant structural damages.

In this work we have investigated, through fully atomistic reactive molecular dynamics simulations, the dynamics and structural changes of the oxidation of single-layer graphyne membranes at room temperature. We have considered α, β, and γ-graphyne structures. Our results showed that the oxidation reactions are strongly site dependent and that the sp-hybridized carbon atoms are the preferential sites to chemical attacks. Our results also showed that the effectiveness of the oxidation (estimated from the number of oxygen atoms covalently bonded to carbon atoms) follows the α, β, γ-graphyne structure ordering. These differences can be explained by the fact that for α-graphyne structures the oxidation reactions occur in two steps: first, the oxygen atoms are trapped at the center of the large polygonal rings and then they react with the carbon atoms composing of the triple bonds. The small rings of γ-graphyne structures prevent these reactions to occur. The effectiveness of β-graphyne oxidation is between the α- and γ-graphynes.

Copyright
References
Hide All
1. Novoselov K. S. et al. ., Science 306, 666 (2004).
2. Cheng S. H. et al. ., Phys. Rev. B 81, 205435 (2010).
3. Withers F., Duboist M., and Savchenko A. K., Phys. Rev. B 82, 073403 (2010).
4. Guinea F., Katsnelson M. I., and Geim A. K., Nature Phys. 6, 30 (2010).
5. Flores M. Z. S., Autreto P. A. S., Legoas S. B., and Galvao D. S., Nanotechnology 20, 465704 (2009).
6. Paupitz R., Autreto P. A. S., Legoas S. B., Srinivasan S. G., van Duin A. C. T., and Galvao D. S., Nanotechnology 24, 035706 (2013).
7. Baughman R. H., Eckhardt H., and Kertesz M., J. Chem. Phys. 87, 6687 (1987).
8. Malko D., Neiss C., Vines F., and Gorling A., Phys. Rev. Lett. 108, 086804 (2012).
9. Coluci V. R., Braga S. F., Legoas S. B., Galvao D. S., and Baughman R. H., Phys. Rev. B 68, 035430 (2003).
10. Coluci V. R., Braga S. F., Legoas S. B., Galvao D. S., and Baughman R. H., Nanotechnology 15, S142 (2004).
11. Li C. et al. ., J. Phys. Chem. C 115, 2611 (2011).
12. Li G. et al. ., Chem. Commun. 46, 3256 (2010).
13. Kim B. and Choi H., Phys. Rev. B 86, 115435 (2012).
14. Malko D., Neiss N. C., and Gorling A., Phys. Rev. B 86, 0454434 (2012).
15. Cranford S. W. and Buehler M. J., Nanoscale 4, 4587 (2012).
16. van Duin A. C. T., Dasgupta S., Lorant F., and Goddard W. A. III, J. Phys. Chem. A 105, 9396 (2001).
17. van Duin A. C. T. and Damste J. S. S., Org. Geochem. 34, 515 (2003).
18. Chenoweth K., van Duin A. C. T., and Goddard W. A. III, J. Phys. Chem. A 112, 1040 (2008).
19. Plimpton S., J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 122 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th December 2017. This data will be updated every 24 hours.