Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-01T00:18:38.959Z Has data issue: false hasContentIssue false

Grazing Incidence X-Ray Scattering Studies of the Structure and Morphology of the Ni/Mgo(001), Co/Nio(111) and Nife/Nio(111) Interfaces During their in Situ Growth

Published online by Cambridge University Press:  10 February 2011

G. Renaud
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée SP2M/IRS; CEA/Grenoble; 17, Rue des Martyrs - 38054 Grenoble Cedex - France
A. Barbier
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée SP2M/IRS; CEA/Grenoble; 17, Rue des Martyrs - 38054 Grenoble Cedex - France
C. Mocuta
Affiliation:
Département de Recherche Fondamentale sur la Matière Condensée SP2M/IRS; CEA/Grenoble; 17, Rue des Martyrs - 38054 Grenoble Cedex - France
Get access

Abstract

Combined in situ structural and ex situ magnetic studies of the Co/NiO(111) and Ni81Fe19/NiO(111) interfaces are presented. The Co and Permalloy films were grown on NiO(111) single crystals. Structural studies were performed by Grazing Incidence X-ray Scattering during growth. The effect of the temperature of the substrate during deposition was investigated. Under specific growth conditions, almost pure FCC Co and NiFe films can be obtained, with small quantities of twins. Magnetic measurements were performed ex situ by Magneto-Optical Kerr Effect (MOKE). A strong correlation between the magnetic properties and the crystallographic structure of the Co film is evidenced. High coercive fields are measured for all samples. High temperature annealing of the NiFe film leads to an improved crystalline quality, but the interface becomes reactive and diffuse: part of the Fe diffuses into the NiO substrate and forms an interface compound, likely to be the spinel NiFe2O4. We also report an in situ grazing incidence X-ray scattering study of the Ni/MgO(001) interface during its formation at room temperature. In-plane measurements reveal that the interface is sharp and that the epitaxial relationship is complex. Two distinct lattices are found to exist: expanded Ni(001) and Ni(110). The latter exhibits several orientations with respect to the substrate depending on the thickness. The Ni(110) orientations disappear by annealing at high temperature, leaving only the Ni cube/cube orientation. The layer was also almost fully transformed into NiO(001) by high temperature oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Henrich, V. E., Rep. Prog. Phys. 48, 1481 (1985).Google Scholar
2 Bialas, H., Heneka, K., Vacuum 45, 79 (1994).Google Scholar
3 Reniers, F., Delplancke, M. P., Asskali, A., Rooryck, V., Sinay, O.Van, Applied Surf. Sci. 92, 35 (1996).Google Scholar
4 Carey, M. J., Berkowitz, A. E., Appl.Phys.Lett. 60, 3060 (1992).Google Scholar
5 Carey, M. J., Berkowitz, A. E., J.Appl.Phys. 73, 6892 (1993).Google Scholar
6 Soeya, S., Nakamura, S., Imagawa, T., Narishige, S., J.Appl.Phys. 74, 6297 (1993).Google Scholar
7 Soeya, S., Imagawa, T., Mitsouka, K., Narishige, S., J.Appl.Phys. 76, 5356 (1994).Google Scholar
8 Tan, M., Tong, H.-C., Tan, S.-I., Rottmayer, R., J.Appl.Phys. 79, 5012 (1996).Google Scholar
9 Taikano, K., Kodama, R., Berkowitz, A. E., Phys.Rev.Lett. 79, 1130 (1997).Google Scholar
10 Shen, J. X., Kief, M. T., J.Appl.Phys. 79, 5008 (1996).Google Scholar
11 Cheng, S. F., Teter, J. P., Lubitz, P., Miller, M. M., Hoines, L., Krebs, J. J., Schaefer, D. M., Prinz, G. A., J.Appl.Phys. 79, 6234 (1996).Google Scholar
12 Barbier, A., Renaud, G., Surf.Sci.Lett. 392, L15 (1997).Google Scholar
13 Pacchioni, G. and Rösch, N., J. Chem. Phys. 104, 7329 (1996).Google Scholar
14 Rösch, N. and Pacchioni, G., in «Chemisorption and Reactivity on Supported Clusters and Thin Films »(1997) 353. Eds. Lambert, R. M. and Pacchioni, G.. Kluwer Academic Publishers. The Netherlands. Google Scholar
15 Raatz, G., J.Woltersdorf, Phys. Stat. Sol. 113, 131 (1989).Google Scholar
16 Nakai, H., Qiu, H., Adamik, M., Sáfran, G., Barna, P. B., Hashimoto, M., Thin Solid Films 263, 159 (1995).Google Scholar
17 Hoel, R. H., Penisson, J. M., Habermeier, H. U., Coll. de Phys. 51, CI-837 (1990).Google Scholar
18 Sato, H., Toth, R. S., Astrue, R. W., J. Appl. Phys. 33, 1113 (1962).Google Scholar
19 Hussain, A. A., J. Phys.: Condens. Matter 1, 9833 (1989).Google Scholar
20 Bialas, H., Li, Li-Shing, Phys. Stat. Sol. 42, 125 (1977).Google Scholar
21 Kiselev, N. I., Man'kov, Yu. I., Pyn'ko, V. G., Sov. Phys. Solid State 31, 685 (1989).Google Scholar
22 Maruyama, H., Qiu, H., Nakai, H., Hashimoto, M., J.Vac.Sci.Technol.A 13, 2157 (1995).Google Scholar
23 Qiu, H., Kosuge, A., Maruyama, H., Adamik, M., Safran, G., Barna, P. B., Hashimoto, M., Thin Solid Films 241, 9 (1994).Google Scholar
24 Fitzsimmons, M. R., Smith, G. S., Pynn, R., Nastasi, M. A., Burkel, E., Physica B 198, 169 (1994).Google Scholar
25 Feidenhans'l, R., Surf. Sci. Rep. 10, 105 (1989).Google Scholar
26 Renaud, G., Surf. Sci. Rep. 32, 1–90 (1989).Google Scholar
27 Robinson, I. K. and Tweet, D. J., Rep. Prog. Phys. 55, 599 (1992).Google Scholar
28 ESRF beamline handbook (http://www.esrf.fr)Google Scholar
29 Robach, O., Renaud, G., Barbier, A., Surf. Sci. 401, 227 (1998).Google Scholar
30 Chopra, H. D., Hockey, B. J., Chen, P. J., McMichael, R. D., Egelhoff, W. F. Jr. J.Appl.Phys 81 4017 (1997).Google Scholar