Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T05:23:32.625Z Has data issue: false hasContentIssue false

A Green Approach to Reversibly Tuning the Optical Properties of Metal Oxides

Published online by Cambridge University Press:  12 June 2012

Szetsen Lee*
Affiliation:
Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan, 32023, Taiwan
Jr-Wei Peng
Affiliation:
Department of Chemistry and Center for Nano-technology, Chung Yuan Christian University, Jhongli, Taoyuan, 32023, Taiwan
*
*Corresponding author: slee@cycu.edu.tw
Get access

Abstract

Metal oxide (MO) films (ZnO and CuO) were synthesized by hydrothermal methods and treated with hydrogen and oxygen plasmas. From uv-visible transmittance spectra, we have found that the optical band gaps of MO films blue-shifted with hydrogen plasma treatment, but red-shifted with oxygen plasma treatment. By alternating the treatment sequence of hydrogen and oxygen plasmas, the MO optical band gap values can be reversibly tuned with the tunable ranges as wide as 80 and 550 meV for ZnO and CuO, respectively. The mechanism for reversible tuning of optical property is proposed based on the results of optical emission, X-ray diffraction, and scanning electron microscopy characterization. Compared to conventional metal ion doping and high temperature annealing methods, the use of low-temperature hydrogen and oxygen plasmas is more environmentally friendly.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Özgür, Ü, Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
2. Figueiredo, V., Elangovan, E., Goncalves, G., Barquinha, P., Pereira, L., Franco, N., Alves, E., Martins, R., and Fortunato, E., Appl. Surf. Sci. 254, 3949 (2008).Google Scholar
3. Major, S., Banerjee, A., Chopra, K. L., and Nagpal, K. C., Thin Solid Films 143, 19 (1986).Google Scholar
4. Liu, Y., Liao, L., Li, J., and Pan, C., J. Phys. Chem. C 111, 5050 (2007).Google Scholar
5. Chang, J. F., Kuo, H. H., Leu, I. C., and Hon, M. H., Sens Actuators B 84, 258 (2002).Google Scholar
6. Vernardou, D., Kenanakis, G., Couris, S., Koudoumas, E., Kymakis, E., Katsarakis, N., Thin Solid Films 515, 8764 (2007).Google Scholar
7. Wang, W., Varghese, O. K., Ruan, C., Paulose, M., and Grimes, C. A., J. Mater. Res. 18, 2756 (2011).Google Scholar
8. Kim, K., Song, Y.-W., Leem, J., Kim, S., and Lee, S. Y., J. Korean Phys. Soc. 55, 140 (2009).Google Scholar
9. Lan, W., Liu, Y., Zhang, M., Wang, B., Yan, H., and Wang, Y., Mater. Lett. 61, 2262 (2007).Google Scholar
10. Oh, J.-H., Kim, K.-K., and Seong, T.-Y., Appl. Surf. Sci. 257, 2731 (2011).Google Scholar
11. Tan, S. T., Chen, B. J., Sun, X. W., Fan, W. J., Kwok, H. S., Zhang, X. H., and Chua, S. J., J. Appl. Phys. 98, 013505 (2005).Google Scholar
12. Bang, J. H., Uhm, H. S., Kim, W., and Park, J. S., Thin Solid Films 519, 1568 (2010).Google Scholar
13. Dong, Y., Fang, Z. Q., Look, D. C., Doutt, D. R., Cantwell, G., Zhang, J., Song, J. J., and Brillson, L. J., J. Appl. Phys. 108, 103718 (2010).Google Scholar
14. Abdel Rafea, M. and Roushdy, N., J. Phys. D: Appl. Phys. 42, 015413 (2009).Google Scholar
15. Natter, H. and Hempelmann, R., J. Phys. Chem. 100, 19525 (1996).Google Scholar