Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T13:38:19.571Z Has data issue: false hasContentIssue false

Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation

Published online by Cambridge University Press:  15 February 2011

Young Jung Kim
Affiliation:
Permanent address: Materials & Chemical Engineering, Sun Moon University, Asan, Korea.
Huamei Shang
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, WA 98195, U.S.A.
Guozhong Cao
Affiliation:
Materials Science and Engineering, University of Washington, Seattle, WA 98195, U.S.A.
Get access

Abstract

This paper reports direct growth of [001] ZnO nanorod arrays on ITO substrate from aqueous solution with electric field assisted nucleation, followed with thermal annealing. Xray diffraction analyses revealed that nanorods have wurtzite crystal structure. The diameter of ZnO nanorods was 60 ∼ 300 nm and the length was up to 2.5 μm depending on the growth condition. Photoluminescence spectra showed a broad emission band spreading from 500 to 870 nm, which suggests that ZnO nanorods have a high density of oxygen interstitials. Low and nonlinear electrical conductivity of ZnO nanorod array was observed, which was ascribed to non-ohmic contact between top electrode and ZnO nanorods and the low concentration of oxygen vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I., and Koumoto, K., Adv. Mater. 14, 418 (2002).Google Scholar
2. Huang, M., Mao, S., Feick, H., Yan, H., Wu, T., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).Google Scholar
3. Lee, J. Y., Choi, Y. S., Kim, J. H., Park, M. O., and Im, S., Thin Solid Films 403, 533(2002).Google Scholar
4. Liang, S., Sheng, H., Liu, Y., Hio, Z., Lu, Y., and Shen, H., J. Cryst. Grow. 225, 110 (2001).Google Scholar
5. Koch, M. H., Timbrell, P. Y., and Lamb, R. N., Semicond. Sci. Tech. 10, 1523 (1995).Google Scholar
6. Keis, K., Magnusson, E., Lindstorm, H., Lindquist, S. E., and Hagfelt, A., Sol. Energ. 73, 51 (2002).Google Scholar
7. Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., and Steiner, T., Superlatt. Microstr. 34, 3 (2003).Google Scholar
8. Lin, Y., Hang, Z., Tang, Z., Yuan, F., and Li, J., Adv. Mater. Opt. Electron. 9, 205 (1999).Google Scholar
9. Kong, Y. C., Yu, D. P., Zhang, B., Fang, W., and Feng, S. Q., Appl. Phys. Lett. 78, 4 (2001).Google Scholar
10. Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science 293, 1289 (2001).Google Scholar
11. Martin, P. M., Good, M. S., Johnston, J. W., Posakony, G. J., Bond, L. J., and Crawford, S. L., Thin Solid Films 379, 253 (2000).Google Scholar
12. Park, W. I., Kim, D. H., Jung, S. W., and Yi, G. C., Appl. Phys. Lett. 80, 4232 (2002).Google Scholar
13. L, V. A.. Roy, Djurisic, A. B., Chan, W. K., Gao, J., Lui, H. F., and Surya, C., Appl. Phys. Lett. 83, 141 (2003).Google Scholar
14. Yao, B. D., Chan, Y. F., and Wang, N., Appl. Phys. Lett. 81, 757 (2002).Google Scholar
15. Vayssieres, L., Keis, K., Lindquist, S. E., and Hegfeld, A., J. Phys. Chem. B 105, 3350 (2001).Google Scholar
16. Kong, X. and Li, Y., Chem. Lett. 32, 838 (2003).Google Scholar
17. Li, Y., Meng, G. W., and Zhang, L. D., Appl. Phys. Lett. 76, 2011 (2000).Google Scholar
18. Zhu, Y. W., Zhang, H. Z., Sun, X. C., Feng, S. Q., Xu, J., Zhao, Q., Xiang, B., Wang, R. M., and Yu, D. P., Appl. Phys. Lett. 83, 144 (2003).Google Scholar
19. Yan, M., Zhang, H. T., Widjaja, E. J., and H, R. P.. Chang, J. Appl. Phys. 94, 5240 (2003).Google Scholar
20. Vayssieres, L., Adv. Mater. 15, 464 (2003).Google Scholar
21. Cao, G. Z., Schermer, J. J., Enckevort, W. J. P. van, Elst, W. A. L. M., and Giling, L. J., J. Appl. Phys. 79, 1357 (1996).Google Scholar
22. Kajikawa, Y., Noda, S., and Komiyama, H., Chem. Vapor Deposit. 8, 99 (2002).Google Scholar
23. Liu, R., Vertegel, A. A., Bohannan, E. W., Sorenson, T. A., and Switzer, J. A., Chem. Mater. 13, 508 (2001).Google Scholar
24. Pauporte, T., Cortes, R., Froment, M., Beaumont, B., and Lincot, D., Chem. Mater. 14, 4702 (2002).Google Scholar
25. Han, Y., Kim, D., Cho, J., and Koh, S., J. Vac. Sci. Tech. B, 21, 288(2003).Google Scholar
26. Greene, L. E., Law, M., Goldberger, J., Kim, F., Johnson, J. C., Zhang, Y., Saykally, R. J., and Yang, P., Angew. Chem. Int. Ed. 42, 3031 (2003).Google Scholar
27. Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A., and Gnade, B. E., J. Appl. Phys. 79, 7983 (1996).Google Scholar
28. Wu, X. L., Siu, G. G., Fu, C. L., and Ong, H. C., Appl. Phys. Lett. 78, 2285 (2001).Google Scholar
29. Park, W. I., Yi, G. C., Kim, J. W., and Park, S. M., Appl. Phys. Lett. 82, 4358 (2003).Google Scholar
30. Mahan, G. D., J. Appl. Phys, 54, 3825 (1983).Google Scholar