Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-10T04:39:37.069Z Has data issue: false hasContentIssue false

Growth and Structure of in-plane Textured MgO Thin Films Deposited on Amorphous Substrates using ion-beam-assisted E-Beam Evaporation

Published online by Cambridge University Press:  10 February 2011

Connie P. Wang
Affiliation:
Ginzton Laboratory, Stanford, CA
Khiem B. Do
Affiliation:
Ginzton Laboratory, Stanford, CA
Ann F. Marshall
Affiliation:
Center of Materials Research, Stanford University, Stanford, CA
Theodore H. Geballe
Affiliation:
Ginzton Laboratory, Stanford, CA
Malcolm R. Beasley
Affiliation:
Ginzton Laboratory, Stanford, CA
Robert H. Hammond
Affiliation:
Ginzton Laboratory, Stanford, CA
Get access

Abstract

In-plane aligned MgO thin films (∼100Å) have been obtained on various amorphous substrates by Ar+ ion-assisted electron-beam evaporation. Based on RHEED and cross-section TEM, we have shown that the MgO texture appears at a very early stage of film growth and is optimized at a thickness of around 100Å. Optimal thickness is the stage at which the surface is fully covered by MgO crystallites. The planar-view TEM of grain structure evolution in samples at different stages of growth reveals the dynamics of the texture developing process. Small, (100)-faceted MgO grains were observed both in planar-view and cross-section TEM images.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Harper, J. M. E., Cuomo, J. J., and Kaufman, H. R., J. Vac. Sci. Technol., 21 (3), 737 (1982).Google Scholar
2 Yu, L S., Harper, J. M. E., Cuomo, J. J., and Smith, D. A., Appl. Phys. Lett. 47 (9), 932 (1985).Google Scholar
3 Bradley, R. M., Harper, J. M. E., and Smith, D. A., J. Appl. Phys. 60 (12), 4160 (1986).Google Scholar
4 Lijima, Y., Tanabe, N., Ikeno, Y., Kohno, O., Physics C 185 (3), 1959 (1991).Google Scholar
5 Reade, R. P., Berdahl, P., Russo, R. E., Garrison, S. M., Appl. Phys. Lett. 61 (18), 2231 (1992).Google Scholar
6 Sonnenberg, N., Longo, A. S., Cima, M. J., Chang, B. P., Ressler, K. G., McIntyre, P. C., Liu, Y. P., J. Appl. Phys. 74 (2), 1027 (1993).Google Scholar
7 Wu, X. D., Foltyn, S. R., Arendt, P., Townsend, J., Adams, C., Campbell, I. H., Tiwari, P., Coulter, Y., and Peterson, D. E., Appl. Phys. Lett. 65 (15), 1961 (1994).Google Scholar
8 Zhu, S., Lowndes, D. H.; Budai, J. D., and Norton, D. P., Appl. Phys. Lett. 65(16), 2012 (1994).Google Scholar
9 Do, K. B., presented at the Fall Materials Research Society Conference, Boston, MA, 1995 (unpublished).Google Scholar
10 Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., and Hammond, R. H., Appl. Phys. Lett., Nov. 17, 1997.Google Scholar