Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T16:18:04.138Z Has data issue: false hasContentIssue false

The Growth of Ni Overlayers on Au(100) Buffers Deposited on GaAs(100) and MgO(100) Substrates.

Published online by Cambridge University Press:  21 February 2011

B. Gilles
Affiliation:
LTPCM, ENSEEG, 3S402 St. Martin d'Hères, France.
J. Eymery
Affiliation:
CENG, DRFMC, SP2M, MP, 3S041 Grenoble, France.
A. Marty
Affiliation:
CENG, DRFMC, SP2M, MP, 3S041 Grenoble, France.
J. C. Joud
Affiliation:
LTPCM, ENSEEG, 3S402 St. Martin d'Hères, France.
A. Chamberod
Affiliation:
CENG, DRFMC, SP2M, MP, 3S041 Grenoble, France.
Get access

Abstract

High quality single-crystal Au(100) buffers have been grown on GaAs(100) or MgO(100) substrates via a thin bcc Fe(100) nucleation layer. Using RHEED, LEED and Auger spectroscopy the growth of Ni overlayers at room temperature was observed to follow an epitaxial layer-by-layer mode for 2 monolayers, after which islanding occured. Detailed analysis of the Auger signal reveals that atomic mixing appears within the first completed layer. Grazing incidence diffraction has been used to investigate the structure of 5–10 nm films. A mixture of (100) and (110) grains have been characterized; the latter orientation shows a large number of stacking faults along the [111] direction in agreement with the Au[001] direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Luedtke, W.D. and Landman, U., Phys. Rev. B 44 (11), 5970 (1991).CrossRefGoogle Scholar
[2] Springthorpe, A.J. and Mandeville, P., J. Vac. Sci. Technol. B, 6 754 (1988).Google Scholar
[3] Cho, A.Y., J. Appl. Phys. 47 (7), 2841 (1976).Google Scholar
[4] Etienne, P., Massies, J., Lequien, S., Cabanel, R., Petroff, F., 6 th Int. Conf. on MBE, San Diego, 1990.Google Scholar
[5] Etienne, P., Massies, J., Nguyen-Van-Dan, F., Barthelemy, A., Fert, A., Appl. Phys. Lett. 55 (21), 2239 (1989).CrossRefGoogle Scholar
[6] Oshiie, Y., Bauer, C.L., J. Vacc. Sci. Technol. A 1 (2), 554 (1983).Google Scholar
[7] Andersson, T.G., Kranski, J., Le Lay, G., Svensson, S.P., Surf. Sci. 168, 301 (1986).CrossRefGoogle Scholar
[8] Andersson, T.G., Le Lay, G., Kranski, J., Svensson, S.P., Phys. Rev. B 36 (11), 6231 (1987).Google Scholar
[9] Narusawa, T., Watanabe, N., Kobayashi, K.L.I., Nakashima, H., J. Vac. Sci. Technol. A 2 (2), 538 (1984).Google Scholar
[10] Watanabe, N., Kobayashi, K.L.I., Narusawa, T., Nakashima, H., J. Appl. Phys. 58(10), 3768 (1985).Google Scholar
[11] Krebs, J.J., Jonker, B.T., Prinz, G.A., J. Appl. Phys. 61, 2596 (1987).Google Scholar
[12] Fedak, D.G. and Gjostein, N.A., Acta. Met. 15, 827 (1967).Google Scholar
[13] Fedak, D.G. and Gjostein, N.A., Surf. Sci. 8, 77 (1967).Google Scholar
[14] Binnig, G.K., Rohrer, H., Gerber, C., Stoll, E., Surf. Sci. 144, 321 (1984).Google Scholar
[15] Yamazaki, K., Takayanagi, K., Tanishiro, Y., Yagi, K., Surf. Sci. 199, 595 (1988).Google Scholar
[16] Gibbs, D., Ocko, B.M., Zehner, D.M., Mochrie, S.G.J., Phys. Rev. B42 (12), 7330(1990).Google Scholar
[17] Argile, C. and Rhead, G.E., Surf. Sci. Rep. 10, 277 (1989).Google Scholar
[18] Palmberg, P.W. and Rhodin, T.N., J. Appl. Phys. 39 (5), 2425 (1968)Google Scholar
[19] Marra, W.C., Eisenberger, P., Cho, A.Y., J. Appl. Phys. 50, 6927 (1979).Google Scholar
[20] Segmuller, A. in Interfaces. Superlattices, and Thin Films, edited by Dow, J.D. and Schuller, I.K. (Mater. Res. Soc. Proc. 77, Pittsburgh, PA 1986) pp. 151155.Google Scholar
[21] Bruce, L.A. and Jaeger, H., Phil. Mag. 36 (6), 1331 (1977).Google Scholar
[22] To be published.Google Scholar