Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T05:27:32.134Z Has data issue: false hasContentIssue false

Growth of Perovskites with Crystalline Interfaces on Si(100)

Published online by Cambridge University Press:  01 February 2011

G. J. Norga*
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
A. Guiller
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
C. Marchiori
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland Laboratorio MDM - INFM, Via C. Olivetti 2, 20041 Agrate Brianza (MI), Italy
J. P. Locquet
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
H. Siegwart
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
D. Halley
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
C. Rossel
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
D. Caimi
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
J. W. Seo
Affiliation:
IPMC, Ecole Polytechnique Fédérale de Lausanne, 1015 Ecublens, Switzerland
J. Fompeyrine
Affiliation:
IBM Research, Zurich Research Laboratory, 8803 Rueschlikon, Switzerland
*
Get access

Abstract

The main challenges involved in the growth of an epitaxial oxide film with a crystalline interface to silicon are reviewed: (1) structural matching of the oxide and semiconductor lattices; (2) thermodynamic energy stabilization at the semiconductor–oxide interface, and (3) kinetic control over oxygen motion throughout the deposition process. We report on how this approach can be used to grow epitaxial perovskites of high structural quality from the (Ba, Sr)(Zr,Ti)O3 family with crystalline interfaces on Si (100) by molecular-beam epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McKee, R. A., Walker, F. J. and Chisholm, M. F., Phys. Rev. Lett. 81, 3014 (1998).Google Scholar
2. Fissel, A., Dabrowski, J. and Osten, H. J., J. Appl. Phys. 91, 8986 (2002).Google Scholar
3. Guha, S., Bojarczuk, N., Narayanan, V., Appl. Phys. Lett. 80, 766 (2002).Google Scholar
4. Droopad, R., Yu, Z., Ramdani, J., Hilt, L., Curless, J., Overgaard, C., Edwards, J. L., Finder, J., Eisenbeiser, K., Wang, J., Kaushik, V., Ngyuen, B. Y. and Ooms, B., J. Cryst. Growth 227–228, 936 (2001).Google Scholar
5. Seo, J. W., Fompeyrine, J., Guiller, A., Norga, G., Marchiori, C., Siegwart, H. and Locquet, J.-P., Appl. Phys. Lett. 83, 5211 (2003).Google Scholar
6. Apostolopoulos, G., Vellianitis, G., Dimoulas, A., Alexe, M., Scholz, R., Fanciulli, M., Dekadjevi, D. T. and Wiemer, C., Appl. Phys. Lett. 81, 3549 (2002).Google Scholar
7. McKee, R., Walker, F., Nardelli, M. B., Shelton, W. A. and Stocks, G. M., Science 300, 1726 (2003).Google Scholar
8. Locquet, J.-P., Catana, A., Mächler, E., Gerber, C. and Bednorz, J. G., Appl. Phys. Lett. 64, 372 (1994).Google Scholar
9. Foerst, C. J., Ashman, C. R., Schwarz, K. and Bloechl, P. E., Nature 427, 53 (2004).Google Scholar
10. Herrera-Gómez, A., Aguirre-Tostado, F. S., Sun, Y., Pianetta, P., Yu, Z., Marshall, D., Droopad, R. and Spicer, W. E., J. Appl. Phys. 90, 6070 (2001).Google Scholar
11. Norga, G. J., Marchiori, C., Guiller, A., Locquet, J. P., Siegwart, H., Halley, D., Rossel, C., Caimi, D., Webb, D. J., Germann, R., Seo, J.W. and Fompeyrine, J., submitted to Appl. Phys. Lett. Google Scholar
12. Onishi, T., Yoshimoto, M., Lee, G. H., Maeda, T. and Koinuma, H., J. Vac. Sci. Technol. A 15, 2469 (1997).Google Scholar
13. This value is an estimate, based on linear interpolation between the dielectric constants of the binary oxides.Google Scholar
14. Chambers, S. A., Liang, Y., Yu, Z., Droopad, R. and Ramdani, J., J. Vac. Sci. Technol. A 19, 934 (2001).Google Scholar
15. Li, H., Hu, X., Wei, Y., Yu, Z., Zhang, X., Droopad, R., Demkov, A. A., Edwards, J., Moore, K. and Ooms, W., J. Appl. Phys. 93, 4521 (2003).Google Scholar