Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T09:16:45.367Z Has data issue: false hasContentIssue false

Growth Temperature Uniformity of MBE-Grown GaAs Determined by Scanning Room Temperature Photoluminescence

Published online by Cambridge University Press:  22 February 2011

K. Stair
Affiliation:
Amoco Technology Company, P.O. Box 3011, Naperville, IL 60566
T. Bird
Affiliation:
Amoco Technology Company, P.O. Box 3011, Naperville, IL 60566
A. Moretti
Affiliation:
Amoco Technology Company, P.O. Box 3011, Naperville, IL 60566
F. Chambers
Affiliation:
Amoco Technology Company, P.O. Box 3011, Naperville, IL 60566
C. Choi-Feng
Affiliation:
Amoco Corporation, P.O. Box 3011, Naperville, IL 60566
Get access

Abstract

We have used scanning room temperature photoluminescence to map GaAs quantum well widthsand AIGaAs barrier compositions over 2-inch and 3-inch diameter epitaxial layers grown by MBE at temperatures ranging from 600 to 700ºC. Analysis of these maps allows a nondestructive quantitative analysis of the GaAs growth rate uniformity from which we can calculate the temperature distribution during growth. We have used this technique to compare the thermal uniformity of various substrate holders designed for use in the Intevac ModGenII MBE system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moretti, Anthony L., Chambers, Frank A., Devane, Gregory P., and Kish, Fred A., IEEE J. Quantum Electronics 25 (5), 10181024 (1989).Google Scholar
2. Beck, W.A., Gill, D., Martel, D.C. and Svensson, S.P., J. Elect. Mater. 20 (2),169173 (1991).Google Scholar
3. Svensson, Stefan P. and Towner, Frederick J., presented at the 1993 North American Molecular Beam Epitaxy Conference, Stanford, CA.Google Scholar
4. Miner, C.J., Watt, B., Moore, W.T., Majeed, A., and Springthorpe, A.J., J. Vac. Sci. Technol., B 11 (3), 9981002 (1993).Google Scholar
5. Reithmaier, J.-P., Broom, R.F., Meier, H.P., Appl. Phys. Lett. 61 (10), 12221224 (1992).Google Scholar
6. Evans, K.R., Kaspi, R., Jones, C.R., Sherriff, R.E., Jogai, V., and Reynolds, D.C., J. Cryst. Growth 127, 523–7 (1993).Google Scholar
7. Houdre, R., Gueissaz, F., Gailhanou, M., Ganiere, J.-D., Rudra, A. and Ilegems, M., J. Cryst. Growth 111, 456460 (1991).Google Scholar
8. Casey, H.C. Jr and Panish, M.B., Heterostructure Lasers (Academic Press, Orlando, FL, 1978), p. 193.Google Scholar
9. Miller, D.A.B, Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C.A., Phys. Rev. B32 (2), 10431060 (1985).Google Scholar
10. Miller, R.C., Kleinaman, D.A., Gossard, A.C., Phys. Rev. B29, 1085 (1984).Google Scholar
11. Greene, Ronald L., Bajaj, Krishan K. and Phelps, Dwight E., Phys. Rev. B 29 (4), 18071812, (1984).Google Scholar
12. Hellman, E.S., Pitner, P.M., Harwit, A., Liu, D., Yoffe, G.W., Harris, J.S. Jr, Caffee, B., and Hierl, T., J. Vac. Sci. Technol. B4 (2), 574577 (1986).Google Scholar