Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T04:10:42.088Z Has data issue: false hasContentIssue false

Guided-mode resonance and field enhancement in semiconductor nanorod arrays

Published online by Cambridge University Press:  21 April 2015

W. X. Yu
Affiliation:
University of Michigan, MI
Y. Yi*
Affiliation:
University of Michigan, MI Massachusetts Institute of Technology, Cambridge, MA
*
Get access

Abstract

Guided mode resonance was numerically demonstrated in the tapered silicon nitride nanorod arrays on glass substrate. Finite difference time domain technique was employed to investigate the detailed light-matter interaction dynamics and the generation of resonance at femtoseconds. Enhanced electromagnetic (EM) field intensity with enhancement factor of 200∼250 could be achieved. This highly concentrated electromagnetic field could be extended to the nanorod array tips and substrate for higher order resonance modes, which allows future application of this transverse propagating field in optical signal amplification, like fluorescence or Raman enhancement.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lin, Y.R., Wang, H.P., Lin, C.A., and He, J.-H., J. Appl. Phys. 106 (2009).Google Scholar
Lin, Y.-R., Lai, K. Y., Wang, H.P., and He, J.-H., Nanoscale 2, 2765 (2010).10.1039/c0nr00402bCrossRefGoogle Scholar
Wang, Y., Lu, N., Xu, H., Shi, G., Xu, M., Lin, X., Li, H., Wang, W., Qi, D., Lu, Y., and Chi, L., Nano Research 3, 520 (2010).10.1007/s12274-010-0012-xCrossRefGoogle Scholar
Hessel, A., and Oliner, A. A., Appl. Opt. 4, 1275 (1965).10.1364/AO.4.001275CrossRefGoogle Scholar
Wang, S. S., Magnusson, R., Bagby, J. S., and Moharam, M. G., J. Opt. Soc. Am. A Opt. Image Sci. Vis. 7, 1470 (1990).10.1364/JOSAA.7.001470CrossRefGoogle Scholar
Wang, S. S., and Magnusson, R., Opt. Lett. 19, 919 (1994).10.1364/OL.19.000919CrossRefGoogle Scholar
Liu, Z. S., Tibuleac, S., Shin, D., Young, P. P., and Magnusson, R., Opt. Lett. 23, 1556 (1998).10.1364/OL.23.001556CrossRefGoogle Scholar
Magnusson, R., Shin, D., and Liu, Z. S., Opt. Lett. 23, 612 (1998).10.1364/OL.23.000612CrossRefGoogle Scholar
Szeghalmi, A., Kley, E. B., and Knez, M., J. Phys. Chem. C 114, 21150 (2010).10.1021/jp107540yCrossRefGoogle Scholar
Lin, S. F., Wang, C. M., Tsai, Y. L., Ding, T. J., Yang, T. H., Chen, W. Y., Yeh, S. F., and Chang, J. Y., Sens. Actuators, B 176, 1197 (2013).10.1016/j.snb.2012.02.014CrossRefGoogle Scholar
Shi, L., Pottier, P., Peter, Y.A., and Skorobogatiy, M., Opt. Express 16, 17962 (2008).10.1364/OE.16.017962CrossRefGoogle Scholar
Zhu, A. Y., Zhu, S., and Lo, G.Q., Opt. Express 22, 2247 (2014).10.1364/OE.22.002247CrossRefGoogle Scholar
Lee, Y.C., Huang, C.F., Chang, J.Y., and Wu, M.-L., Opt. Express 16, 7969 (2008).10.1364/OE.16.007969CrossRefGoogle Scholar
Lin, J. H., Tseng, C.Y., Lee, C.T., Kan, H.-C., and Hsu, C. C., Opt. Express 21, 24318 (2013).10.1364/OE.21.024318CrossRefGoogle Scholar
Gao, W., Shu, J., Qiu, C., and Xu, Q., ACS Nano 6, 7806 (2012).10.1021/nn301888eCrossRefGoogle Scholar
Giese, J. A., Yoon, J. W., Wenner, B. R., Allen, J. W., Allen, M. S., and Magnusson, R., Opt. Lett. 39, 486 (2014).10.1364/OL.39.000486CrossRefGoogle Scholar
Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolskiy, V. A., and Zayats, A. V., Nat. Mater. 8, 867 (2009).10.1038/nmat2546CrossRefGoogle Scholar
Khatua, S., Paulo, P. M. R., Yuan, H., Gupta, A., Zijlstra, P., and Orrit, M., ACS Nano (2014).Google Scholar
Jackson, J. B., and Halas, N. J., Proc. Natl. Acad. Sci. U. S. A. 101, 17930 (2004).10.1073/pnas.0408319102CrossRefGoogle Scholar