Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T02:55:45.659Z Has data issue: false hasContentIssue false

Hall-Petch Analysis of Yield, Flow and Fracturing

Published online by Cambridge University Press:  15 February 2011

Ronald W. Armstrong*
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742
Get access

Abstract

The explanation for the grain size dependence of the polycrystal yield stress or cleavage stress of steel, investigated in complementary studies by Hall and Petch, is rooted in dislocation pile-up theory first described by Eshelby, Frank and Nabarro just a step away from previous theoretical work on the stress concentrating properties of cracks. Beginning from Cottrelllocking of dislocations at grain boundaries by carbon that is responsible for the pronounced yield point behavior and the grain size dependence of the yield strength of steel, the same concepts have been shown to apply for the complete stress/strain behavior of steel and other materials. Other mechanical properties such as fatigue strength show a similar dependence on grain size. A notable application of such grain size based considerations has been to the ductile-brittle transition and fracture toughness properties of steel and related materials — because refinement of grain size both strengthens a material and improves its fracture toughness. Early results for the polycrystal hardness dependence on grain size gave evidence that the strength benefits of grain size refinement ought to extend to ultrafine grain sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hall, E.O., Proc. Phys. Soc. London, B64 (1951) 747.Google Scholar
[2] Petch, N.J., J. Iron Steel Inst. 174 (1953) 25.Google Scholar
[3] Eshelby, J.D., Frank, F.C. and Nabarro, F.R.N., Philos. Mag. 42 (1951) 351.Google Scholar
[4] Cottrell, A.H. and Bilby, B.A., Proc. Phys. Soc. London, A62 (1949) 49.Google Scholar
[5] Hall, E.O., ”Yield Point Phenomena in Metals and Alloys” (Macmillan, London, 1970).Google Scholar
[6] Petch, N.J., ”Advances in Physical Metallurgy”, Sir Alan Cottrell's 70th Birthday Meeting (Inst. Metals, London, 1990) p. 11.Google Scholar
[7] Griffith, A.A., Phil. Trans. Roy. Soc. London, A221 (1920) 163.Google Scholar
[8] Cottrell, A.H., Trans. Amer. Inst. Min. Metall. Engrs. 212, (1958) 192.Google Scholar
[9] Petch, N.J., Philos. Mag. 3 (1958) 1089.Google Scholar
[10] Petch, N.J., Acta Metall. 34 (1986) 1387.Google Scholar
[11] Petch, N.J. and Armstrong, R.W., Acta Metall. 37 (1989) 2279.Google Scholar
[12] Phillips, W.L. and Armstrong, R.W., Metall. Trans. 3 (1972) 2571.Google Scholar
[13] Armstrong, R.W., Codd, I., Douthwaite, R.M. and Petch, N.J., Philos. Mag. 7 (1962) 45.Google Scholar
[14] Hollomon, J.H., Trans. Amer. Inst. Min. Metall. Engrs 162 (1945) 268.Google Scholar
[15] Petch, N.J., Acta Metall. 12 (1964) 59.Google Scholar
[16] Petch, N.J., Philos. Mag. 1 (1956) 866.Google Scholar
[17] Armstrong, R.W., ”Yield, Flow and Fracture of Polycrystals”, (Applied Science Publ., London, 1984) p.l.Google Scholar
[18] Hauser, F.E., Landon, P.R. and Dorn, J.E., Trans. Amer. Inst. Min. Metall. Engrs 206 (1956) 589.Google Scholar
[19] Armstrong, R.W., Acta Metall. 16 (1968) 347.Google Scholar
[20] Taylor, G.I., J. Inst. Metals 62 (1938) 307.Google Scholar
[21] Hauser, F.E., Landon, P.R. and Dorn, J.E., Trans. Amer. Soc. Metals 48 (1956) 986.Google Scholar
[22] Hall, E.O., Nature 173 (1954) 948.Google Scholar
[23] Armstrong, R.W., Metall. Trans. 1 (1970) 1169.Google Scholar
[24] Sinclair, G.M. and Craig, W.J., Trans. Amer. Soc. Metals 44 (1952) 929.Google Scholar
[25] Karry, R.W. and Dolan, T.J., Proc. Amer. Soc. Test. Mater. 53 (1953) 789.Google Scholar
[26] Okubo, H., Murakami, S. and Hosono, K., J. Inst. Metals 91 (1962–3) 95.Google Scholar
[27] Forrest, P.G. and Tate, A.E.L., J. Inst. Metals 93 (1964–5) 438.Google Scholar
[28] Armstrong, R.W., Canadian Metall. Quart. 13 (1974) 187.Google Scholar
[29] Mitchell, T.E. and Thornton, P.R., Philos. Mag. 8 (1963) 1127.Google Scholar
[30] Armstrong, R.W., ”Advances in Materials Research” (Wiley, NY, 1970) Volume 4, p. 101.Google Scholar
[31] Phillips, W.L. and Armstrong, R.W., J. Mech. Phys. Solids 17 (1969) 265.Google Scholar
[32] Armstrong, R.W., Philos. Mag. 9 (1964) 1063; “Fracture 1969” (Chapman and Hall, London, 1969) p. 314.Google Scholar
[33] Sandstrom, R. and Bergstrom, Y., Metal Sci. 18 (1984) 177.Google Scholar
[34] Zerilli, F.J. and Armstrong, R.W., J. Appl. Phys. 61 (1987) 1816; J. Appl. Phys. 68 (1990) 1580.Google Scholar
[35] Armstrong, R.W., Link, L. Roberson and Speich, G.R., ”Processing, Microstructure and Properties of HSLA Steels” (Minerals, Metals and Materials Soc., Pittsburgh, 1988) p. 305.Google Scholar
[36] Armstrong, R.W., Zerilli, F.J., Holt, W.H. and Mock, W., Jr., ”High-Pressure Science and Technology - 1993” (Amer. Inst. Phys. NY, 1994) Conf. Proc. 309, Part 2, p. 1001.Google Scholar
[37] Yokobori, T., Kamei, A. and Kogawa, T., ”Third International Conference on Fracture” (Verein Deutscher Eisenhuttenleute, Dusseldorf, 1973) Paper I–431.Google Scholar
[38] Armstrong, R.W., Eng. Fract. Mech. 28 (1987) 529.Google Scholar
[39] Brittain, C.P. and Smith, G.C., J. Inst. Metals 89 (19601961) 407C.P. Brittain, R.W. Armstrong and G.C. Smith, Scr. Metall. 19(1985) 89.Google Scholar
[40] Embury, J.D. and Fisher, R.M., Acta Metall. 14 (1966) 147. Google Scholar
[41] Hu, H. and Cline, R.S., Trans. Metall. Soc., Amer. Inst. Min. Metall. Engrs 242 (1968) 1013; R.W. Armstrong and P.C. Jindal, Ibid. 2513.Google Scholar
[42] Vashi, U.K., Armstrong, R.W. and Zima, G.E., Metall. Trans. 1(1970) 1769.Google Scholar
[43] Armstrong, R.W., Chou, Y.T., Fisher, R.M. and Louat, N., Philos. Mag. 14 (1966) 943.Google Scholar
[44] Li, J.C.M. and Liu, G.C.T., Philos. Mag. 15 (1967) 1059.Google Scholar
[45] Armstrong, R.W.,”Ultrafine Grain Metals” (Syracuse University Press, 1970) p.1.Google Scholar
[46] Hughes, G.D., Smith, S.D., Pande, C.S., Johnson, H.R. and Armstrong, R.W., Scr. Metall. 20 (1986) 93.Google Scholar
[47] Gleiter, H., Prog. Mater. Sci. 33 (1989) 223.Google Scholar
[48] Nieman, G.W., Weertman, J.R. and Siegel, R.W., J. Mater. Res. 6 (1991) 1012.Google Scholar
[49] Pande, C.S., Masumura, R.A. and Armstrong, R.W., J. Nanostructured Mater. 2 (1993) 323.Google Scholar