Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T09:20:27.277Z Has data issue: false hasContentIssue false

Heteroepitaxial Self-Assembly of Higher-Complexity Structures By Combining Growth Control with Nanopatterning

Published online by Cambridge University Press:  01 February 2011

Jerrold A. Floro
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1415
Jennifer L. Gray
Affiliation:
University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904
Surajit Atha
Affiliation:
University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904
Nitin Singh
Affiliation:
University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904
Dana Elzey
Affiliation:
University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904
Robert Hull
Affiliation:
University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904
Get access

Abstract

We provide an overview of a novel self-assembly process that occurrs during GeSi/Si(001) strain-layer heteroepitaxy under conditions of limited adatom mobility. Suppression of copious surface diffusion leads to limited three-dimensional roughening in the form of pits that partially consume a thick, metastable wetting layer. The material ejected from the pits accumulates alongside, eventually forming a symmetric quantum dot molecule consisting of four islands bound to a {105}-faceted pit. These structures, which are of interest in nanologic applications, appear to arise from an intrinsic strain-relief mechanism in a relatively narrow regime of deposition conditions. An additional degree of morphological control is obtained by annealing films containing pits, before they evolve to full quantum dot molecules. Annealing promotes a one-dimensional growth instability leading to the formation of highly anisotropic grooves, bounded by long, wire-like islands. Finally, we show that patterns created in the Si substrate using a focused ion beam can control the location of quantum dot molecules, which is an additional critical step towards being able to use these structures for computing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tromp, R. M., Ross, F. M., Reuter, M. C., Phys. Rev. Lett. 84, 4641 (2000).Google Scholar
2. Sutter, P., Lagally, M. G., Phys. Rev. Lett. 84, 4637 (2000).Google Scholar
3. Mo, Y.-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
4. Floro, J. A., Chason, E., Twesten, R. D., Hwang, R. Q., and Freund, L. B., Phys. Rev. Lett. 79, 3946 (1997).Google Scholar
5. Floro, J. A., Chason, E., Freund, L. B., Twesten, R. D., and Hwang, R. Q., Phys. Rev. B 59, 1990 (1999).Google Scholar
6. Rastelli, A. and von Kanel, H., Surf. Sci. 532, 769 (2003).Google Scholar
7. Floro, J. A., Sinclair, M. B., Chason, E., Freund, L. B., Twesten, R. D., Hwang, R. Q., and Lucadamo, G. A., Phys. Rev. Lett. 84, 701 (2000).Google Scholar
8. Floro, J. A., Chason, E., Sinclair, M., Freund, L. B., and Lucadamo, G. A., Appl. Phys. Lett. 73, 951 (1998).Google Scholar
9. Tomitori, M., Watanabe, K., Kobayashi, M., and Nishikawa, O., Appl. Surf. Sci. 76/77, 322 (1994).Google Scholar
10. Ross, F. M., Tersoff, J., and Tromp, R. M., Phys. Rev. Lett. 80, 984 (1998).Google Scholar
11. Medeiros-Ribeiro, Gilberto, Bratkovski, Alexander M., Kamins, Theodore I., Ohlberg, Douglas A. A., and Stanley Williams, R., Science 279, 353 (1998).Google Scholar
12. Floro, J. A., Lucadamo, G. A., Chason, E., Freund, L. B., Sinclair, M., Twesten, R. D., and Hwang, R. Q., Phys. Rev. Lett. 80, 4717 (1998).Google Scholar
13. Gray, Jennifer L., Hull, Robert, and Floro, Jerrold A., Appl. Phys. Lett. 81, 2445 (2002).Google Scholar
14. Jesson, D.E., Chen, K.M., Pennycook, S.J., Thundat, T. and Warmack, R.J., Phys. Rev. Lett. 77, 1330 (1996).Google Scholar
15. Vandervelde, T. E., Kumar, P., Kobayashi, T., Gray, J. L., Pernell, T., Floro, J. A., Hull, R., Bean, J. C., Appl. Phys. Lett. 2003, 83, 5205–7.Google Scholar
16. Deng, X. and Krishnamurthy, M., Phys. Rev. Lett. 81, 1473 (1998).Google Scholar
17. Tersoff, J. and Le Goues, F., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
18. Lam, C-H., Lee, C-.K, and Sander, L. M., Phys. Rev. Lett. 89, 216102 (2002).Google Scholar
19. Bernstein, G., Bazan, C., Chen, M., Lent, C. S., Merz, J. L., Orlov, A. O., Porod, W., Snider, G. L., and Tougaw, P. D., Superlattices and Microstructures 20, 447 (1996).Google Scholar
20. Gray, J. L., Singh, N., Elzey, D. M., Hull, R., and Floro, J. A., Phys. Rev. Lett. 92, 135504 (2004).Google Scholar
21. Gray, J. L., Hull, R., and Floro, J. A., Appl. Phys. Lett. 85, 3253 (2004).Google Scholar
22. Jesson, D., Chen, G., Chen, K. M., and Pennycook, S. J., Phys. Rev. Lett. 80, 5156 (1998).Google Scholar
23. Tersoff, J., Spencer, B.J., Rastelli, A., and von Känel, H., Phys. Rev. Lett. 89, 196104 (2002).Google Scholar
24. Gray, Jennifer L., Atha, Surajit, Hull, Robert, and Floro, Jerrold A., Nanoletters 4, 2447 (2004).Google Scholar
25. Kammler, M., Hull, R., Reuter, M. C., Ross, F. M., Appl. Phys. Lett. 82, 1093 (2003).Google Scholar