Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-09T10:09:11.660Z Has data issue: false hasContentIssue false

High Electrical Conductivity in Organic Single-Component Systems Based on 2,5-Dimethylthio-TCNQ

Published online by Cambridge University Press:  16 February 2011

J. S. Zambounis
Affiliation:
Corporate Materials Research, Ciba-Geigy AG, 1723 Marly 1, Switzerland
J. Mizuguchi
Affiliation:
Corporate Materials Research, Ciba-Geigy AG, 1723 Marly 1, Switzerland
H. Hediger
Affiliation:
Corporate Materials Research, Ciba-Geigy AG, 1723 Marly 1, Switzerland
J. Pfeiffer
Affiliation:
Corporate Materials Research, Ciba-Geigy AG, 1723 Marly 1, Switzerland
B. Schmidhalter
Affiliation:
Corporate Materials Research, Ciba-Geigy AG, 1723 Marly 1, Switzerland
G. Rihs
Affiliation:
Corporate Materials Research, Ciba-Geigy AG, 1723 Marly 1, Switzerland
O. Chauvet
Affiliation:
Laboratoire de Physique des Solides Semi-cristallins, Département de Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
L. Zuppiroli
Affiliation:
Laboratoire de Physique des Solides Semi-cristallins, Département de Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
Get access

Abstract

2,5-dimethylthio-TCNQ has been newly synthesized, and its optical and electrical properties have been investigated in evaporated films. A high electrical conductivity of σ=2× 10−5 Scm−l has been measured at room temperature. The present single-component system is found to contain 2×1017 spins/cm3. The charge carriers are presumably due to incorporated impurities which give the ESR signals. Carrier hopping is considerably facilitated by close intermolecular S-N contacts between the S atom of the -SCH3 group of one molecule and the N atom of -C≡N group of the neighboring Molecule.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Coleman, L. B., Cohen, M. J., Sandman, D. J., Yamagishi, F. G., Garito, A. F., Heeger, A. J., Solid State Commun., 12, 1125 (1973).Google Scholar
2. For a recent review, see Semiconductors and Semimetals. Vol. 27, edited by Conwell, E. (Academic Press, Inc., New York, 1988).Google Scholar
3. Li, Y., Nakano, C., Imaeda, K., Inokuchi, H., Maruyama, Y., Iwasawa, N. and Saito, G., Bull. Chem. Soc. Japan, 63, 1857 (1990).Google Scholar
4. Inokuchi, H., IMaeda, K., Mori, T., Maruyama, Y., Saito, G., Okada, N., Yamochi, H., Seki, K., Higuchi, Y. and Yasuoka, N., Nature, 329, 39 (1987).Google Scholar
5. Turek, P., Petit, P., André, J.-J., Simon, J., Even, R., Boudjema, B., Guillaud, G., Maitrot, M., J. Am. Chem. Soc., 109, 5119 (1987).Google Scholar
6. Mizuguchi, J., Jpn. J. Appl. Phys., 20, 713 (1981).Google Scholar
7. Gömpel, W., Synth. Metals, 41–43, 1087 (1991).Google Scholar
8. van Ewyk, R. L., Chadwick, A. V., Wright, J. D., J. Chem. Soc. Faraday Trans. I, 76, 2194 (1980).Google Scholar
9. Papavassiliou, G. C., Yiannopoulos, S. Y., Zambounis, J. S., J. Chem. Soc. Chem. Commun., 1986, 820.Google Scholar
10. Wheland, R. C., Martin, E. L., Org, J.. Chem., 40, 3101 (1975).Google Scholar
11. Mizuguchi, J., Zambounis, J. S. and Rihs, G., submitted to Acta Crystallogr. Sect. C.Google Scholar
12. Bright, A. A. and Chaikin, P. M., Phys. Rev. B, 10, 3560 (1974).Google Scholar
13. Kamitsos, E. I., Paravassiliou, G. C. and Karakassides, M. A., Mol. Cryst. Liq. Cryst. 134, 43 (1986).Google Scholar
14. Walatka, V. V. Jr, Labes, M. M. and Perlstein, J. H., Phys. Rev. Lett., 31, 1139 (1973).Google Scholar
15. Greene, R. L., Street, G. B. and Suter, L. J., Phys. Rev. Lett., 34, 577 (1975).Google Scholar