Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T03:48:43.676Z Has data issue: false hasContentIssue false

High Performance Nanostructured Coatings and Nanopowders by NanoSpraySM Combustion Processing

Published online by Cambridge University Press:  10 August 2011

Yong Dong Jiang
Affiliation:
nGimat Co., 5315 Peachtree Blvd., Atlanta, GA 30341, USA
Ganesh Venugopal
Affiliation:
nGimat Co., 5315 Peachtree Blvd., Atlanta, GA 30341, USA
Marvis White
Affiliation:
nGimat Co., 5315 Peachtree Blvd., Atlanta, GA 30341, USA
Kwang Choi
Affiliation:
nGimat Co., 5315 Peachtree Blvd., Atlanta, GA 30341, USA
Andrew T. Hunt
Affiliation:
nGimat Co., 5315 Peachtree Blvd., Atlanta, GA 30341, USA
Get access

Abstract

nGimat has commercialized a number of nanotechnology applications with all being based on its core competence of fabricating low cost high quality nanomaterials. The company offers a wide range of compositions as coatings and also in both nanopowder and dispersion forms. A few of these nanomaterials and applications will be covered as examples including superhydrophobic coatings, various nanopowders (including Li-battery based), high temperature thin wire coatings, and tunable RF components.

The combustion chemical vapor deposition (CCVD) technique, which is the thin film NanoSpraySM combustion process, can be easily scaled up to large substrates and integrated into an existing production line, thus enabling a license business model. The combustion chemical vapor condensation (CCVC) technique or NanoSpraySM CCVC (nCCVC), which is the nanopowder NanoSpraySM combustion process, is also readily scalable. The manufacture of these nanopowder based products is internationally competitive even when made in the USA.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hunt, A. T., Carter, W. B., and Cochran, J. K., Appl. Phys. Lett. 63, 266 (1993)10.1063/1.110362Google Scholar
2. Hunt, A. T., Cochran, J. K., and Carter, W. B., “Combustion Chemical Vapor Deposition of Films and Coatings,” U.S. Patent No. 5,652,021 (29 July 1997)Google Scholar
3. Hunt, A. T., Hwang, T. J., and Shao, H., “Combustion Chemical Vapor Deposition of Phosphate Films and Coatings,” U.S. Patent No. 5,858,465 (12 January 1999)Google Scholar
4. Nakajima, A., Hashimoto, K., and Watanabe, T., Chem. Monthly 132, 31 (2001)10.1007/s007060170142Google Scholar
5. Patankar, N. A., Langmuir 20, 8209 (2004)10.1021/la048629tGoogle Scholar
6. Quere, D., Lafuma, A., and Bico, J., Nanotechnology 14, 1109 (2003)Google Scholar
7. Barthlott, W. and Neinhuis, C., Planta 202, 1 (1997)10.1007/s004250050096Google Scholar
8. Feng, L., Li, S. H., Li, Y. s., Li, H. J., Zhang, L. J., Zhai, J., Song, Y. L., Liu, B. Q., Jiang, L., and Zhu, D. B., Adv. Mater. 14, 1857 (2002)10.1002/adma.200290020Google Scholar
9. He, B., Lee, J., and Patankar, N. A., Colloids and Surfaces A: Physicochem. Eng. Aspects 248, 101 (2004)10.1016/j.colsurfa.2004.09.006Google Scholar
10. Wu, Y. Y., Sugimura, H., Inoue, Y., and Takai, O., Chem. Vap. Deposition 8, 47 (2002)10.1002/1521-3862(20020304)8:2<47::AID-CVDE47>3.0.CO;2-#3.0.CO;2-#>Google Scholar
11. Shang, H. M., Wang, Y., Limmer, S. J., Chou, T. P., Takahashi, K., and Cao, G. Z., Thin Solid Film 472, 37 (2005)10.1016/j.tsf.2004.06.087Google Scholar
12. Jiang, Y. D., Smalley, Y., Harris, H., and Hunt, A. T., Nanotech2008, Boston, MA, USA, June 1-5, 2008 Google Scholar
13. Tagantsev, A. K., Sherman, V. O., Astafiev, K. F., Venkatesh, J., and Setter, N., J. Electroceramics, 11, 5 (2003)10.1023/B:JECR.0000015661.81386.e6Google Scholar
14. Cole, M. W., Joshi, P. C., Ervin, M. H., Wood, M. C., and Pfeffer, R. L., Thin Solid Films, 374, 34 (2000)10.1016/S0040-6090(00)01059-2Google Scholar
15. Bao, P., Jackson, T. J., Wang, X., and Lancaster, M. J., J. Phys. D: Appl. Phys., 41, 063001 (2008)10.1088/0022-3727/41/6/063001Google Scholar
16. Gevorgian, S. S. and Kollberg, E. L., IEEE Trans. Microwave Theory Tech. 49, 2117 (2001)10.1109/22.963146Google Scholar
17. Dawber, M., Rabe, K. M., and Scott, J. F., Reviews of Modern Phys. 77, 1083 (2005)10.1103/RevModPhys.77.1083Google Scholar
18. Venugopal, G., Hunt, A. T., and Alamgir, F., Nanomaterial for Energy Storage in Li-ion Battery Applications in Materials Matters 5(2), 42 (2010)Google Scholar
19. Manthiram, A., Murugan, A. V., Sarkar, A., and Muraliganth, T., Energy and Environmental Science, 1, 62 (2008)10.1039/b811802gGoogle Scholar