Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-15T04:10:43.723Z Has data issue: false hasContentIssue false

High Power Magnetostrictive Materials from Cryogenic Temperatures to 250 C

Published online by Cambridge University Press:  16 February 2011

Arthur E. Clark*
Affiliation:
Clark Associates Adelphi, MD 20783-1225, USA
Get access

Abstract

The rare earths, both in elemental form and in compounds, are widely known as possessing many extraordinary magnetic properties. In this paper, we focus on the huge magnetically induced displacements (magnetostrictions) based upon the element terbium. A proper balance of magnetic anisotropy and magnetostriction, plus a proper choice of crystal axes lead to materials which can switch large quantities of energy between the internal (magnetic) and external (mechanical) states with the application of small triggering magnetic fields. Power densities 2000 times those of conventional magnetostrictive materials and 10-20 times those of typical piezoceramics are available. These materials are particularly valuable for smart systems where large energy transduction is needed such as active structure stiffening and active vibration control.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clark, A. E., Wun-Fogle, M., Restorff, J. B., and Lindberg, J. F., IEEE Trans. on Magn. 28, 3156 (1992).Google Scholar
2.Clark, A. E., Restorff, J. B., Wun-Fogle, M., and Lindberg, J. F., Proc. International Conference on Magnetism, Warsaw, Poland, Aug. 1994.Google Scholar
3.Clark, A. E., in Ferromagnetic Materials, edited by Wohlfarth, E. P., (North Holland Publishing Co. 1980) p. 531.Google Scholar
4.Rhyne, J. J. and Legvold, S., Phys. Rev. 138, A507 (1965).Google Scholar
5.Clark, A. E., DeSavage, B. F., and Bozorth, R. M., Phys. Rev. 138, A216 (1965).Google Scholar
6.Morin, P., Rouchy, J., and Lacheisserie, E. du Tremolet de, Phys. Rev. B16, 3182 (1977).Google Scholar
7.Spano, M. B., Clark, A. E., and Wun-Fogle, M., IEEE Trans. on Magnetics, 25, 3794 (1989).Google Scholar
8.Morin, P. and Pierre, J., Solid State Communications 13, 537 (1973).Google Scholar
9.Clark, A. E., Teter, J. P., Wun-Fogle, W., Restorff, J. B., and Lindberg, J. F., Intermag Conference, San Antonio TX, April 1995.Google Scholar
10.Clark, A. E., Abbundi, R., Savage, H. T., and McMasters, O. D., Physica 86-8B 73 (1977).Google Scholar
11.Abbundi, R. and Clark, A. E., IEEE Trans. MAG-13, 1519 (1977).Google Scholar
12.Clark, A. E., Teter, J. P., and Wun-Fogle, M., J. Appl. Phys. 69, 5771 (1991).Google Scholar
13.Clark, A. E., Verhoven, J. D., McMasters, O. D., and Gibson, E. D., IEEE Trans. on Magnetics MAG-22. 973 (1986).Google Scholar
14.Teter, J. P., Clark, A. E., and McMasters, O. D., J. Appl. Phys. 61, 3787 (1986).Google Scholar
15.Moffett, M. B., Clark, A. E., Wun-Fogle, M., Lindberg, J., Teter, J. P., and McLaughlin, E. A., J. Acoust. Soc. Am. 82, 1448 (1991).Google Scholar
16.Clark, A. E., Teter, J. P., and McMasters, O. D., J. Appl. Phys. 63 3910 (1988).Google Scholar
17.Clark, A. E. and Crowder, D. N., IEEE Trans. on Magnetics MAG-21, 1945 (1985).Google Scholar
18.Butler, J. H., "Applications for the Design of Etrema Terfenol-D Magnetostrictive Transducers," Edge Technologies, Inc., 306 South 16 St., Ames, IA (1988).Google Scholar
19.Kvarnsjo, L., "Principles and Tools for Design of Magnetomechanical Devices Based on Giant Magnetostrictive Materials," Royal Institute of Technology, Dept. of Plant Engineering, S-100 44, Stockholm, Sweden.Google Scholar
20.Claeyssen, F. and Boucher, D., "Design of Lanthanide Magnetostrictive Sonar Projectors," Proc. Defense Technologies Conf., page 1059, Paris, France (1991).Google Scholar
21.Butler, J. H., Butler, S. C., and Clark, A. E., J. Acoust. Soc. Am. 88, 7 (1990).Google Scholar