Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T05:37:12.055Z Has data issue: false hasContentIssue false

High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

Published online by Cambridge University Press:  01 February 2011

Yogesh K. Vohra
Affiliation:
ykvohra@uab.edu, University of Alabama at Birmingham (UAB), Physics, 310 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294-1170, United States, (205) 934-6662, (205) 975-8009
Bagvanth Reddy Sangala
Affiliation:
bagvanth@uab.edu, University of Alabama at Birmingham (UAB), Physics, 310 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294-1170, United States
Andrew K. Stemshorn
Affiliation:
akstem@uab.edu, University of Alabama at Birmingham (UAB), Physics, 310 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294-1170, United States
Kevin M. Hope
Affiliation:
HopeKM@montevallo.edu, University of Montevallo, Biology, Chemistry, and Mathematics, Harman Hall, Station 6480, Montevallo, AL, 35115, United States
Get access

Abstract

High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp ⟶ Sm-type ⟶ dhcp ⟶ distorted fcc (hR-24) ⟶ monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalization in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hewson, AC, Kondo Problem to Heavy Fermions. Cambridge University Press (1993).Google Scholar
2 Held, K. Huscroft, C. Scalettar, R. T. and McMahan, A. K., Physical Review Letters 85, 373 (2000).Google Scholar
3 Lindbaum, A. Heathman, S. Litfin, K. and Meresse, Y. and Haire, R. G. Phys. Rev. B 63, 214101 (2001).Google Scholar
4 Penicaud, M. J. Phys.: Condens. Matter 14, 3575 (2002).Google Scholar
5 Lindbaum, A. Heathman, S. Bihan, T Le, Haire, R. G. Idiri, M., and Lander, G. H., J. Phys.: Condens. Matter 15, S2297 (2003).Google Scholar
6 Heathman, S. Haire, R. G. Bihan, T. Le, Lindbaum, A. Idiri, M., Normile, P. Li, S. Ahuja, R., Johansson, B. and Lander, G. H. Science 309, 110 (2005).Google Scholar
7 Velisavljevic, N. and Vohra, Y. K. High Pressure Research 24, 295 (2004).Google Scholar
8 Weir, S. T. Akella, J. Ruddle, C. A. Vohra, Y. K. and Catledge, S. A. Appl. Phys. Lett. 77, 3400 (2000).10.1063/1.1326838Google Scholar
9 Benedict, U. and Holzapfel, W. B. in Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner, J. K. A. Eyring, L. Lander, G. H. and Choppin, G. R. (Elsevier Science Publishers, 1993), Vol. 17.Google Scholar
10 Hamaya, N., Sakamoto, Y., Fujihisa, H., Fujii, Y, Takemura, K, Kikegawa, T and Shimomura, O , in AIP Conference -- July 10, 1994, Vol. 309, p. 457.Google Scholar
11 Cunningham, N.C. Qiu, Wei, Hope, Kevin M. Liermann, Hanns-Peter, and Vohra, Yogesh K. Phys. Rev. B 76, 212101 (2007).Google Scholar
12 McMahon, M. I. and Nelmes, R. J. Physical Review Letters 78, 3884 (1997).Google Scholar
13 Cunningham, N. C. Qiu, W. and Vohra, Y. K. High Pressure Research 26, 43 (2006).Google Scholar