Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T14:52:30.440Z Has data issue: false hasContentIssue false

High real-space resolution structure of materials by high-energy x-ray diffraction

Published online by Cambridge University Press:  10 February 2011

V. Petkov
Affiliation:
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48823
S. J. L. Billinge
Affiliation:
Department of Physics and Astronomy and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48823
J. Heising
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48823
M. G. Kanatzidis
Affiliation:
Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, MI 48823
S. D. Shastri
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
S. Kycia
Affiliation:
Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853
Get access

Abstract

Results of high-energy synchrotron radiation experiments are presented demonstrating the advantages of the high-resolution atomic Pair Distribution Function technique in determining the structure of materials with intrinsic disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rietveld, H.M., J. Appl. Cryst. 2, 65 (1969).10.1107/S0021889869006558Google Scholar
2. Young, R. A., in The Rietveld Method edited by Young, R.A. (Oxford University Press, 1995).Google Scholar
3. Egami, T., in Local structure from Diffraction edited by Billinge, S.J.L. and Thorpe, M.F. (New York, Plenum, 1998), p. 1.Google Scholar
4. Waseda, Y., The structure of non-crystalline materials, (New York, McGraw Hill, 1980).Google Scholar
5. Petkov, V., J. Appl. Cryst. 22, 387 (1989).10.1107/S0021889889002104Google Scholar
6. Petkov, V., Jeong, I-K., Chung, J., Thorpe, M.F., Kycia, S. and Billinge, S.J.L., Phys. Rev. Lett. 83, 4089 (1999).10.1103/PhysRevLett.83.4089Google Scholar
7. Petkov, V., Jeong, I-K., M-Jacobs, F., Proffen, Th., Billinge, J.S.L. and Dmowski, W., J. Appl. Phys., submitted.Google Scholar
8. Chianelli, R. R., Ruppert, A.F., and Jose-Yacaman, M., Vazquez-Zavala, A., Catal. Today 23, 269 (1995).10.1016/0920-5861(94)00167-ZGoogle Scholar
9. Yang, D. and Frindt, R.F., J. Phys. Chem. Solids 57, 1113 (1996).10.1016/0022-3697(95)00406-8Google Scholar
10. Tsai, H.-L., Heising, J., Schindler, J.L., Kannewurf, C.R., Kanatzidis, M.G., Chem. Mater. 9, 879 (1997).10.1021/cm960579tGoogle Scholar
11. Heising, J. and Kanatzidis, M. G., J. Am.Chem. Soc. 121, 638 (1999).10.1021/ja983043cGoogle Scholar
12. Petkov, V., Billinge, S.J.L., Heising, J. and Kanatzidis, M. G., in preparationGoogle Scholar
13. Petkov, V., Jeong, I-K., Gutmann, M., Peterson, P.F., Billinge, S.J.L., Shastri, S. and Himmel, B., Advanced Photon Source User Activity Report - www.aps.anl.gov/xfd/communicator/user2000/sri-cat.htmlGoogle Scholar