Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T05:26:56.556Z Has data issue: false hasContentIssue false

Highly Strained (InAs)M/(GaAs)N Multiple Quantum Well Based Resonant Tunneling Diodes on GaAs (100) Substrates and Their Application in Optical Switching

Published online by Cambridge University Press:  21 February 2011

R. M. Kapre
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, CA 90089-0241
Kezhong Hu
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, CA 90089-0241
Li Chen
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, CA 90089-0241
S. Guha
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, CA 90089-0241
A. Madhukar
Affiliation:
Photonic Materials and Devices Laboratory, University of Southern California, CA 90089-0241
Get access

Abstract

We report the realization of (a) an optically bistable switch using a strained resonant tunneling diode (RTD) and (b) highly strained RTDs exhibiting simultaneously high peak current densities (Jp) and peak-to-valley current ratios (PVR) suitable for high-speed electronic switching. Both of these make use of RTDs with (InAs)M/(GaAs)N strained short period multiple quantum well regions with AlAs barriers in a triple-well, double barrier structure. For the former, high contrast ratio (20:1) and an on state reflectivity of 46.5 % has been obtained at room temperature in an optically bistable switch involving a strained InGaAs/GaAs (100) multiple quantum well based asymmetric Fabty-Perot reflection modulator, detector, and a strained RTD and a Si field effect transistor. For the latter, we have obtained a Jp of 125 kA/cm2 with a PVR of 4.7 at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miller, D. A. B., Chemla, D. S., Damen, T. C., Gossard, A. C., Wiemann, W., Wood, T. H., and Burrus, C. A., Appl. Phys. Lett. 45, 13 (1984).Google Scholar
2. Miller, D. A. B., Henry, J. E., Gossard, A. C., and English, J. H., Appl. Phys. Lett. 49, 821 (1986).Google Scholar
3. Lentine, A. L., Hinton, H. S., Miller, D. A. B., Henry, J. E., Cunningham, J. E., Chirovsky, L. M. F., Appl. Phys. Lett. 52, 1419 (1988).CrossRefGoogle Scholar
4. Law, K-K., Yan, R. H., Coldren, L. A., andJ. Merz, L., Appl. Phys. Lett. 57, 1345 (1990).Google Scholar
5. Sakaki, H., Kurata, H., and Yamanishi, M., Electron. Lett. 24, 1 (1988).Google Scholar
6. Kurata, H., Tsuchiya, M., and Sakaki, H., Surf. Sci. 228, 468 (1990).Google Scholar
7. Williamson, R. C., in Conference on Lasers and Electro-optics (Optical Society of America, Washington DC, 1989), p. 32.Google Scholar
8. Aull, B. F., Nichols, K. B., and Mehanian, C., OSA Topical Conference on Spatial Light Modulators and Applications Incline Village, Nevada (OSA Technical Digest Series 14, 1990), p. 52.Google Scholar
9. Woodward, T. K., Sizer, Theodore II, Sivco, D. L., and Cho, A. Y., Appl. Phys. Lett. 57, 548 (1990).Google Scholar
10. Hu, Kezhong, Chen, Li, Madhukar, A., Chen, P., Kaviani, K., Jung, J. J., Karim, Z., Kyriakakis, C., and Tanguay, A. R. Jr., (submitted to Appl. Phys Lett.).Google Scholar
11. Kapre, R., Madhukar, A., Kaviani, K., Guha, S. and Rajkumar, K.C., Appl. Phys. Lett. 56, 922 (1990).CrossRefGoogle Scholar
12. Broekaert, T.P.E. and Fonstad, C.G., IEEE International Electron Devices Meeting Technical Digest, p. 559, 1989.Google Scholar
13. Soderstrom, J.R., McGill, T.C., Brown, E.R., Parker, C.D. and Mahoney, L.J., presented at the Electronic Materials Conference (Santa Barbara, CA), June 27-29, 1990.Google Scholar
14. Kapre, R., Madhukar, A. and Guha, S., IEEE Electron Device Lett 11, 270 (1990).Google Scholar
15. Cheng, P. and Harris, J.S. Jr., Appl. Phys. Lett. 56, 1676 (1990).Google Scholar
16. Diamond, S.K., Ozbay, E., Rodwell, M.J.W., Bloom, D.M., Pao, Y.C. and Harris, J.S., in OSA Proceedings on Picosecond Electronics and Optoelectronics, vol.4, p.101, 1989.Google Scholar
17. Bonnefoi, A.R., McGill, T.C., Brenham, R.D. and Anderson, G.B., Appl. Phys. Lett. 50, 344 (1987).Google Scholar
18. Landheer, D., Liu, H.C., Buchanan, M. and Stower, R., Appl. Phys. Lett. 54, 1784 (1989).Google Scholar
19. Yen, M. Y., Madhukar, A., Lewis, B. F., Fernandez, R., Eng, L. and Grunthaner, F. J., Surf. Science 174, 606 (1986).Google Scholar
20. Kapre, R., Madhukar, A., Oshita, F., and Fetterman, H. (to be published).Google Scholar