Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T06:09:16.752Z Has data issue: false hasContentIssue false

High-Power Mid-IR Interband Cascade Lasers Based on Type-II Heterostructures

Published online by Cambridge University Press:  10 February 2011

Rui Q. Yang
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
J. D. Bruno
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
J. L. Bradshaw
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
J. T. Pham
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
D. E. Wortman
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783-1197
Get access

Abstract

The interband cascade lasers (IC) represent a new class of mid-IR light sources, which take advantage of the broken-gap alignment in type-II quantum wells to reuse electrons for sequential photon emissions from serially connected active regions. Here, we describe recent progress in InAs/GaInSb type-II IC lasers at emission wavelengths of 3.8-4 µm; these semiconductor lasers have exhibited significantly higher differential quantum efficiencies and peak powers than previously reported. Also, these lasers were able to operate at temperatures up to 217 K, which is higher than the previous record (182 K) for an IC laser at this wavelength. We observed from several devices at temperatures above 80 K a slope efficiency of ∼800 mW/A per facet, corresponding to a differential external quantum efficiency of /500%. A peak optical output power exceeding 4 W/facet and peak power efficiency of /7% were observed from a device at 80 K. Also, we report the first cw operation of IC lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, R. Q., at 7th Inter. Conf on Superlattices, Microstructures and Microdevices, Banff, Canada, August, 1994; Superlattices and Microstructures 17, 77 (1995).Google Scholar
2. Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho, A. Y., Science 264, 553(1994).Google Scholar
3. Yang, R. Q., Lin, C.-H., Chang, P. C., Murry, S. J., Zhang, D., Pei, S. S., Kurtz, S. R., Chu, S. N. G., and Ren, F., Electron. Lett. 32, 1621 (1996).Google Scholar
4. Yang, R. Q., Lin, C.-H., Murry, S. J., Pei, S. S., Liu, H. C., Buchanan, M., and Dupont, E., Appl. Phys. Lett. 70, 2013 (1997).Google Scholar
5. Lin, C.-H., Yang, R. Q., Zhang, D., Murry, S. J., Pei, S. S., Allerma, A. A., and Kurtz, S. R., Electron. Lett. 33, 598 (1997).Google Scholar
6. Felix, C. L., Bewley, W. W., Vurgaftman, I., Meyer, J. R., Zhang, D., Lin, C.-H., Yang, R. Q., and Pei, S. S., IEEE Photonics Technol. Lett. 9, 1433 (1997).Google Scholar
7. Yang, R. Q., Yang, B. H., Zhang, D., Lin, C.-H., Murry, S. J., Wu, H., and Pei, S. S., Appl. Phys. Lett. 71, 2409 (1997).Google Scholar
8. Yang, B. H., Zhang, D., Yang, R. Q., Lin, C.-H., Murry, S. J., and Pei, S. S., Appl. Phys. Lett. 72, 2220 (1998).Google Scholar
9. Olafsen, L. J., Aifer, E. H., Vurgaftman, I., Bewley, W. W., Felix, C. L., Meyer, J. R., Zhang, D., Lin, C.-H., and Pei, S. S., Appl. Phys. Lett. 72, 2370 (1998).Google Scholar
10. Yang, R. Q., Microelectronics J. 30, 1043 (1999).Google Scholar
11. Yang, R. Q., Bruno, J. D., Bradshaw, J. L., Pham, J. T., and Wortman, D. E., Electron. Lett. 35, 1254 (1999).Google Scholar
12. Bradshaw, J. L., Yang, R. Q., Bruno, J. D., Pham, J. T., and Wortman, D. E., Appl. Phys. Lett. 75, 2362 (1999).Google Scholar
13. Le, H. Q., Lin, C. H., Murry, S. J., Yang, R. Q., and Pei, S. S., IEEE J. Quantum Electron. 34, 1016 (1998).Google Scholar
14. Le, H. Q., Turner, G. W., and Ochoa, J. R., IEEE Photon. Technol. Lett. 10, 663 (1998).Google Scholar
15. Faist, J., Tredicucci, A., Capasso, F., Sirtori, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., and Cho, A. Y., IEEE J. Quantum Electron. 34, 336 (1998).Google Scholar
16. Gmachl, C., Tredicucci, A., Capasso, F., Hutchinson, A. L., Sivco, D. L., Baillargeon, J. N., and Cho, A. Y., Appl. Phys. Lett. 72, 3130 (1998).Google Scholar
17. Meyer, J. R., Vurgaftman, I., Yang, R. Q., and Ram-Mohan, L. R., Electron. Lett. 32, 45 (1996).Google Scholar
18. Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R., IEEE Phot. Tech. Lett. 9, 170 (1997).Google Scholar
19. Mu, Y.-M. and Yang, R. Q., J. Appl. Phys. 84, 5357 (1998).Google Scholar
20. Yang, R. Q. and Mu, Y.-M., in In-Plane Semiconductor Lasers III, edited by Choi, H. H. and Zory, P. S. (Proc. SPIE 3628, 1999) pp. 104112.Google Scholar
21. Yang, R. Q., in Long Wavelength Infrared Emitters Based on Quantum Wells and Superlattices, edited by Helm, M. (Gordon and Breach, Singapore, 1999), Chap. 2.Google Scholar