Published online by Cambridge University Press: 26 February 2011
The reversible introduction of atomic hydrogen into III–V semiconductors reduces the active concentrations of shallow donor and acceptor levels, as well as a variety of deep levels. Dissociation of the hydrogen-containing complexes by thermal annealing can restore the original active concentrations, and aid in the characterization of the complexes involved. Hydrogen is in-diffused at temperatures typically in the 150 to 300°C range, most simply from an H2 plasma.
In GaAs, the III–V compound which has been subjected to the most hydrogenation studies, carrier concentrations are reduced (by up to many orders of magnitude) in both n- and p-type material. Hydrogen diffusion depths are dependent on dopant concentration, but for similar doping levels, diffusion is always deeper into p-type GaAs. In addition, the type of plasma exposure strongly influences the depth of H diffusion, with low frequency, direct exposure producing the greatest penetration depth. A variety of deep level defects in bulk material (including EL2) and in MBE-grown layers can be passivated, and partial passivation of interface-related defects in GaAs-on-Si has been demonstrated. Reactivation kinetics are dependent on the nature of the dopant or defect, with the passivation of p-GaAs being less stable than that of n-GaAs. Recent infra-red absorption studies have confirmed the formation of a donor-hydrogen complex in n-GaAs, in contrast to an As-H complex in p-GaAs. In GaAIAs, acceptors, donors, and the DX center have been passivated. In some cases, the defect passivation has greater thermal stability than that of the shallow levels, a property of potential benefit. Recently demonstrated applications of hydrogenation include an MBE GaAs MESFET with a hydrogenated channel, and a GaAs/GaAIAs double heterostructure laser with current guiding provided by resistive hydrogenated regions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.