Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-18T10:07:25.598Z Has data issue: false hasContentIssue false

Identification of Growth Precursors In Hot Wire CVD of Amorphous Silicon Films

Published online by Cambridge University Press:  17 March 2011

H. L. Duan
Affiliation:
Department of Chemical Engineering Stanford University Stanford, CA 94305
G. A. Zaharias
Affiliation:
Department of Chemical Engineering Stanford University Stanford, CA 94305
Stacey F. Bent
Affiliation:
Department of Chemical Engineering Stanford University Stanford, CA 94305
Get access

Abstract

A soft ionization laser-based technique using 10.5 eV photon energy has been used to probe radical growth precursors in the hot wire chemical vapor deposition (HW-CVD) of a-Si:H. Using a Re filament, it is shown that Si, SiH3, and Si2H6are the major silicon-containing species formed from the hot wire dissociation of silane, and SiH2is at most a very minor product. However, chamber history is found to influence the radical species produced; i.e. SiH3 and Si2H6are largely related to the chamber wall and filament conditions. The gas species produced by W and Re filaments at wire temperatures between 1000oC and 2000oC have been studied and compared. Heating the filament to higher temperatures increases the flux of Si, SiH3 and Si2H6 in a similar fashion for both filament materials. Above 1800oC, the Si intensity saturates, while SiH3 and Si2H6show monotonic increase without saturation up to 2000oC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1 Mahan, A. H., J. Appl. Phys 69, 6728 (1991).Google Scholar
2 Matsumura, H., Jpn. J. Appl. Phys.-Pt I 37, 3176 (1998).Google Scholar
3 Doyle, J., Robertson, R., Lin, G. H., He, M. Z., and Gallagher, A., J. Appl. Phys. 64, 3215 (1988).Google Scholar
4 Nozaki, Y., Kongo, K., Miyazaki, T., Kitazoe, M., Horii, K., Umemoto, H., Masuda, A., and Matsumura, H., J. Appl. Phys. 88, 5437 (2000).Google Scholar
5 Nozaki, Y., Kitazoe, M., Horii, K., Umemoto, H., Masuda, A., and Matsumura, H., Thin Solid Films, accepted (2001).Google Scholar
6 Inoue, K., Tange, S., Tonokura, K., and Koshi, M., Thin Solid Films, accepted (2001).Google Scholar
7 Holt, J. K., Swiatek, M., Goodwin, D. G., and Atwater, H. A., Ext. Abstracts, 1st Int. Conf. Cat-CVD Process, Kanazawa, Japan, 31 (2000).Google Scholar
8 Veenendaal, P. A. T. T. van, Gijzeman, O. L. J., Rath, J. K., and Schropp, R. E. I., Ext. Abstracts, 1st Int. Conf. Cat-CVD Process, Kanazawa, Japan, 159 (2000).Google Scholar
9 Mahan, A. H., Mason, A., Nelson, B. P., and Gallagher, A. C., Mater. Res. Soc. Symp. Proc. 609 (2000).Google Scholar
10 Schubert, M. B., Bruhne, K., Kohler, C., and Werner, J. H., Ext. Abstracts, 1st Int. Conf. Cat-CVD Process, Kanazawa, Japan, 277 (2000).Google Scholar
11 Morrison, S., Coates, K., Xi, J., and Madan, A., Mater. Res. Soc. Symp. Proc. 557, 85 (1999).Google Scholar
12 Duan, H. L., Zaharias, G. A., and Bent, S. F., Thin Solid Films, accepted (2001).Google Scholar
13 Duan, H. L., Zaharias, G. A., and Bent, S. F., Appl. Phys. Lett. 78, 1784 (2001).Google Scholar
14 Duan, H. L., Zaharias, G. A., and Bent, S. F., unpulished data.Google Scholar
15 Matsumura, H., Masuda, A., and Izumi, A., Mater. Res. Soc. Symp. Proc. 557, 67 (1999).Google Scholar
16 Gall, N. R., Rut'kov, E. V., and Tontegode, A. Y., Sov. Phys. Tech. Phys. 35, 475 (1990).Google Scholar