Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T08:19:59.388Z Has data issue: false hasContentIssue false

Imaging The Atomic-Scale Structure of Molybdenum and Vanadium Oxides by Scanning Tunneling Microscopy

Published online by Cambridge University Press:  21 February 2011

Gregory S. Rohrer
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering Pittsburgh PA 15213
Weier Lu
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering Pittsburgh PA 15213
Richard L. Smith
Affiliation:
Carnegie Mellon University, Department of Materials Science and Engineering Pittsburgh PA 15213
Get access

Abstract

Single crystals of Na0.003V2O5 and Mo18O52 were grown by chemical vapor transport and cleaved surfaces were imaged in ultrahigh vacuum using scanning tunneling microscopy (STM). Because the Mo18O52 (100) and Na0.003V2O5 (010) surfaces of these layered materials have a bulk terminated structure, the atomic-scale contrast in constant current images can be directly compared to components of the bulk structure. Among the structural features identified in the STM images are the surface/crystallographic shear plane intersections, the different MoOx coordination polyhedra on the Mo18O52 (100) surface, and the VO5 square pyramids that make up the Na0.003V2O5 (010) surface. In each of these cases, it was found that the atoms closest to the tip dominate the image contrast.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Germain, J. E., in Adsorption and catalysis on Oxide Surfaces, edited by Che, M. and Bond, G. C. (Elsevier, Ansterdam, 1985) p. 355.Google Scholar
[2] Haber, J., in Solid State chemistry in Catalysis edited by Grasselli, R. and Brazdil, J. (American Chemical Society, Washington D.C., 1985) p. 1.Google Scholar
[3] Rohrer, G. S., Henrich, V. E., and Bonnell, D. A., Science 250, 1239 (1990).CrossRefGoogle Scholar
[4] Wiesendanger, R., Shvets, I. V., Bürgler, D., Tarrach, G., Güntherodt, H. J., Coey, J. M. D., and Gröser, S., Science 255, 583 (1992).Google Scholar
[5] Matsumoto, T., Tanaka, H., Kawai, T., and Kawai, S., Surface Science Letters, 278, L153 (1992).Google Scholar
[6] Lu, W., Nevins, N., Norton, M. L., and Rohrer, G. S., Surface Science 291, 395 (1993).Google Scholar
[7] Rohrer, G. S., Lu, W., Smith, R. L., and Hutchinson, A., Surface Science 292, 261 (1993).CrossRefGoogle Scholar
[8] Bertrand, O., Floquet, N. and Jacquot, D., J. of Crystal Growth 96, 708 (1989).Google Scholar
[9] Hagenmuller, P., Galy, J., Pouchard, M., and Casalot, A., Mat. Res. Bull. 1, 45 (1966).CrossRefGoogle Scholar
[10] Rohrer, G. S., Lu, W., Norton, M. L., Blake, M. A., and Rohrer, C. L., in press J. Solid State Chemistry.Google Scholar
[11] Kihlborg, L., Ark. Kemi. 21, 443 (1963).Google Scholar
[12] Heil, J., Wesner, J., Lommel, B., Assmus, W., and Grill, W., J. Appl. Phys. 65, 5220 (1989).Google Scholar
[13] Garfunkel, E., Rudd, G., Novak, D., Wang, S., Ebert, G., Greenblatt, M., Gustafsson, T., and Garofalini, S. H., Science 246, 99 (1989).Google Scholar
[14] Walter, U., Thomson, R. E., Burk, B., Crommie, M. F., Zettl, A., and Clarke, J., Phys. Rev. B 45, 11474 (1992).Google Scholar