Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T19:28:24.783Z Has data issue: false hasContentIssue false

Increased Volatility of Barium Metal Organics by the Use of Nitrogen Lewis Bases

Published online by Cambridge University Press:  25 February 2011

Jillian M. Buriak
Affiliation:
Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, Massachusetts 02138
Linda K. Cheatham
Affiliation:
Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, Massachusetts 02138
John J. Graham
Affiliation:
Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, Massachusetts 02138
Roy G. Gordon
Affiliation:
Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, Massachusetts 02138
Andrew R. Barron
Affiliation:
Department of Chemistry and Materials Research Laboratory, Harvard University, Cambridge, Massachusetts 02138
Get access

Abstract

Substituted β-diketonate complexes of barium have limited volatility even at reduced pressures. The addition of nitrogen Lewis bases to the CVD carrier gas allows barium β-diketonates, even those with no reported volatility, to be transported in the vapor phase at temperatures as low as 70°C (atmospheric pressure) with no decomposition. No increase in volatility is observed, however, for barium carboxylate complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1See for example, Prakash, H., Prog. Cryst. Growth Charact, 6, 371 (1983).Google Scholar
2(a) Maple, M.B., Dalichaouch, Y., Ferreira, J.M., Hake, R.R., Lee, B.W., Neumier, J.J., Tovikachivili, M.S., Yang, K.N., Zhou, H., Guertin, R.P. and Kuric, M.V., Physica B, 148, 155 (1987). (b) M.K. Wu, J.R. Ashbum, C.J. Tovng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.0. Wang and C.W. Chu, Phys. Rev. Lett., 58, 908 (1987).Google Scholar
3See for example (a) Zhang, K., Kwak, B.S., Boyd, E.P., Wright, A.C., and Erbil, A. Appl. Phys.Lett., 54, 380 (1989). (b) K. Watanabe, H. Yamane, H. Kurosawa, T. Hirai, N. Kobayashi, H. Iwasqki, K. Noto, and Y. Moto Appl. Phys. Lett., 54, 575 1989. (c) T. Tsuruoka, R. Kawasaki, and H. Abe Jpn. J. Appl. Phys., 28 L1800 (1989).Google Scholar
4 Berg, E.W. and Chiang, J.J. Acosta Anal. Chim. Acta 40, 101 (1968).Google Scholar
5(a) Panson, A.J., Charles, R.G., Schmidt, D.N., Szedon, J.R., Machiko, G.J., and Braginski, A.I., Appl. Phys. Lett. 53, 31 (1988). (b) J. Zhao, K.H. Dahmen, H.O. Marcy, L.M. Tonge, T.J. Marks, B.W. Wessels, and C.R. Kannewurf, Appl. Phys. Lett 53, 31 (1988). (c) D.S. Richeson, L.M. Tonge, J. Zhao, J. Zhang, H.O. Marcy, T.J. Marks, B.W. Wessels, and C.R. Kannewurf Appl. Phys. Lett 54, 2154 (1989). (d) A.P. Purdy, A.D. Berry, R.T. Holm, M. Fatemi, and K.K. Gaskill, Inorg. Chem. 28, 2799 (1989).Google Scholar
6 Caulton, K.G., Chisholm, M.H., Drake, S.R., and Huffman, J.C., J. Chem. Soc. Chem. Commun., 1498 (1990).Google Scholar
7 Dickinson, P.H., Geballe, T.H., Sanjurjo, A., Hildenbrand, D., Craig, G., Zisk, M., Collman, J., Banning, S.A., and Sievers, R.E. J. Appl. Phys. 66, 444 (1989).Google Scholar
8 Spee, C.I.M.A., Meuneima, H.A., Tuminer, K., Zouwen, E.A. van der, and Mackor, A. Materials Research Society Meeting, Boston, (1989).Google Scholar
9 and, J.M. Buriak Barron, A.R., unpublished results.Google Scholar
10(a) Barron, A.R., Buriak, J.M., Gordon, R.G. and Cheatham, L.K., J. Electrochem Soc. 137, 225C (1990). (b) A.R. Barron, American Institute of Chemical Engineers Meeting, Chicago, Illinois (1990) Paper No. 128d.Google Scholar