Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T10:38:51.093Z Has data issue: false hasContentIssue false

Indium distribution inside quantum wells: The effect of growth interruption in MBE

Published online by Cambridge University Press:  11 February 2011

A. M. Sanchez
Affiliation:
ESCTM-CRISMAT, UMR6508-CNRS, ISMRA. 6, Boulevard Maréchal Juin, 14050 Caen Cedex, France
P. Ruterana
Affiliation:
ESCTM-CRISMAT, UMR6508-CNRS, ISMRA. 6, Boulevard Maréchal Juin, 14050 Caen Cedex, France
S. Kret
Affiliation:
Institute of Physics, PAS, Al. Lotników 32/46, 02–668 WARSAW, Poland
P. Dłużewski
Affiliation:
IFTR PAS, Świątokrzyska 21, 00-049 WARSAW, Poland
G. Maciejewski
Affiliation:
IFTR PAS, Świątokrzyska 21, 00-049 WARSAW, Poland
N. Grandjean
Affiliation:
CRHEA, UPR 10 CNRS, 1 rue Bernard Gregory, 06560 VALBONNE, France
B. Damilano
Affiliation:
CRHEA, UPR 10 CNRS, 1 rue Bernard Gregory, 06560 VALBONNE, France
Get access

Abstract

Quantitative analysis of high resolution electron microscopy image has been carried out to measure the indium distribution inside InGaN/GaN quantum well. The analyzed samples were nominally grown with 15% indium composition by molecular beam epitaxy with interruptions during the InxGa1-xN layer growth. The strain distribution is not homogeneous inside the quantum wells, and indium rich clusters can be observed. Areas with almost no indium concentration were observed corresponding to the growth interruption. A comparison with samples grown by metalorganic chemical vapor deposition is attempted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S. and Nakamura, S., Appl. Phys. Lett. 70 (1997) 981 Google Scholar
2. Saito, T. and Arakawa, Y., Phys. Rev. B 60 (1999) 1701 Google Scholar
3. Singh, R., Doppalapudi, D., Moustakas, T.D. and Romano, L.T., Appl. Phys. Lett. 70 (1997) 1089 Google Scholar
4. McClukey, M.D., Romano, L.T., Krusar, B.S., Bour, D. P., Johnson, N. M., and Brennan, S., Appl. Phys. Lett. 72 (1998) 1730 Google Scholar
5. Kisielowski, C., Liliental Weber, Z. and Nakamura, S., Jpn. J. Appl. Phys., Part 1 36 (1997) 6932 Google Scholar
6. Cho, H.K., Lee, J.Y., Sharma, N., Humphreys, C.J., Yang, G.M., Kim, C.S., Song, J.H. and Yu, P.W., Appl. Phys. Lett. 79 (2001) 2594 Google Scholar
7. Grandjean, N., Leroux, M., Massies, J., Mesrine, M. and Laügt, M., Jpn. J. Appl. Phys. 38 (1999) 618 Google Scholar
8. Damilano, B., Grandjean, N., Massies, J., Siozade, L. and Leymarie, J., Appl. Phys. Lett. 77 (2000) 1268 Google Scholar
9. Cho, H.K., Lee, J.Y., Kim, C.S. and Yang, G.M., J. Appl. Phys. 91 (2002) 1166 Google Scholar